The high prevalence of liver diseases such as chronic hepatitis and cirrhosis underscores the need for efficient and cost-effective treatments. The potential benefit of silymarin (extracted from the seeds of Silybum marianum or milk thistle) in the treatment of liver diseases remains a controversial issue. Therefore, the objective of this review is to assess the clinical efficacy and safety of silymarin by application of systematic approach. 525 references were found in the databases, of which 84 papers were retained for closer examination and 36 were deemed suitable for detailed analysis. Silymarin has metabolic and cell-regulating effects at concentrations found in clinical conditions, namely carrier-mediated regulation of cell membrane permeability, inhibition of the 5-lipoxygenase pathway, scavenging of reactive oxygen species (ROS) of the R-OH type and action on DNA-expression, for example, via suppression of nuclear factor (NF)-kappaB. Pooled data from case record studies involving 452 patients with Amanita phalloides poisoning show a highly significant difference in mortality in favour of silibinin [the main isomer contained in silymarin] (mortality 9.8% vs 18.3% with standard treatment; p < 0.01). The available trials in patients with toxic (e.g. solvents) or iatrogenic (e.g. antispychotic or tacrine) liver diseases, which are mostly outdated and underpowered, do not enable any valid conclusions to be drawn on the value of silymarin. The exception is an improved clinical tolerance of tacrine. In spite of some positive results in patients with acute viral hepatitis, no formally valid conclusion can be drawn regarding the value of silymarin in the treatment of these infections. Although there were no clinical end-points in the four trials considered in patients with alcoholic liver disease, histological findings were reported as improved in two out of two trials, improvement of prothrombin time was significant (two trials pooled) and liver transaminase levels were consistently lower in the silymarin-treated groups. Therefore, silymarin may be of use as an adjuvant in the therapy of alcoholic liver disease. Analysis was performed on five trials with a total of 602 patients with liver cirrhosis. The evidence shows that, compared with placebo, silymarin produces a nonsignificant reduction of total mortality by -4.2% [odds ratio (OR) 0.75 (0.5 - 1.1)]; but that, on the other hand, the use of silymarin leads to a significant reduction in liver-related mortality of-7% [OR: 0.54 (0.3 - 0.9); p < 0.01]. An individual trial reported a reduction in the number of patients with encephalopathy of -8.7% (p = 0.06). In one study of patients with cirrhosis-related diabetes mellitus, the insulin requirement was reduced by -25% (p < 0.01). We conclude that available evidence suggests that silymarin may play a role in the therapy of (alcoholic) liver cirrhosis. Silymarin is has a good safety record and only rare case reports of gastrointestinal disturbances and allergic skin rashes have been published. This review does not ai...
The abundant use of anti-infective agents resulted in the emergence of drug-resistant bacteria, fungi, and viruses. To overcome the increasing resistance of pathogenic microbes, a variety of medicinal plants have been screened worldwide for their antimicrobial properties. The aim is to find new, effective antimicrobial agents with novel modes of actions. Essential oils derived from aromatic medicinal plants have been reported to exhibit exceptionally good antimicrobial effects against bacteria, yeasts, filamentous fungi, and viruses. The progress of this expanding scientific field will be documented by the most important results published in the last decade.
Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H2O2, fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91phox, indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or α- and β-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.
Background: The potential benefit of silymarin (special extract from the fruits of Silybum marianum) in the treatment of liver diseases remains a controversial issue. Methods: For this systematic review electronic databases identified 65 papers for the search terms silymarin, silibinin, silicristin or milk thistle and clinical trial. Only 19 complied with the criteria ‘double-’ or ‘single-blind’. These publications were analysed from a clinical point of view and meta-analytic calculations were performed. Results: The clinical evidence of a therapeutic effect of silymarin in toxic liver diseases is scarce. There is no evidence of a favourable influence on the evolution of viral hepatitis, particularly hepatitis C. In alcoholic liver disease, comparing with placebo, aspartate aminotransferase was reduced in the silymarin-treated groups (p = 0.01) while alkaline phosphatase was not. In liver cirrhosis, mostly alcoholic, total mortality was 16.1% with silymarin vs. 20.5% with placebo (n.s.); liver-related mortality was 10.0% with silymarin vs. 17.3% with placebo (p = 0.01). Conclusions: Based on the available clinical evidence it can be concluded - concerning possible risks / probable benefits - that it is reasonable to employ silymarin as a supportive element in the therapy of Amanita phalloides poisoning but also (alcoholic and grade Child ‘A’) liver cirrhosis. A consistent research programme, consolidating existing evidence and exploring new potential uses, would be very welcome.
Recent years have seen an explosion of scientific papers that deal with drugs from the fruits of milk thistle and its active substances silymarin (standardized mixture of flavonolignanes), thus justifying an updated systematic review. Methods: Electronic databases identified silymarin, silibinin, silicristin or milk thistle as descriptors in >700 papers (34% published in last 5 years; 92% dealt with animal pharmacological). Only papers adequately reporting on experimental conditions, dosing, variables tested and statistics were analysed. Results: Silymarin was found to modify specifically the functions related to various transporters and receptors located in the cell membranes; that is, organic anion uptake transporter peptides (OATP), ABC transporters (P-gp), bile salt export pump, as well as TNF-a-dependent and possibly selectin-dependent phenomena. In the cytoplasm, some antioxidant properties and the inhibition of the lipoxygenase pathway seem quite selective and could concur to the antitoxic effects. Some effects like the inhibition of inducible nitric-oxide synthase, of nuclear factor κ B, and reduction of collagen synthesis are indicative of DNA/RNAmediated effects. Several studies using ‘in vitro’ and ‘in vivo’ cancer models suggest a potential of silymarin in such diseases. Topical and systemic silymarin has skin protective properties against UV-induced damage in epidermis and causes an up-regulation of tumour-suppressor genes p53- and p21CIP1. There were no data on hepatic viral replication, viremia or spontaneous tumours in the data examined. Conclusions: Data presented here do not solve the question about the complex mechanism(s) of action of the medicinal herbal drug silymarin. Silymarin may be a natural multi-functional and multi-target drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.