Viscum album agglutinin-I (VAA-I) is a plant lectin that possesses interesting potential therapeutic properties and immunomodulatory activities. We have recently found that VAA-I is a potent inducer of human neutrophil apoptosis, but the mechanism(s) involved require further elucidation. In this study, we found that VAA-I alters mitochondrial transmembrane potential and increases intracellular levels of reactive oxygen species (ROS). Despite these observations, treatment with the mitochondrial stabilizer, bongkrekic acid, or with catalase, known to degrade H2O2, fails to reverse VAA-I-induced apoptosis. Moreover, VAA-I was found to induce apoptosis in PLB-985 cells deficient in gp91phox, indicating that the lectin acts via an ROS-independent mechanism. Pretreatment of neutrophils with brefeldin A, an inhibitor of vesicular transport, was found to reverse VAA-I-induced apoptosis. Protein expression of Mcl-1 was decreased by VAA-I. The role of caspases in the degradation of cytoskeletal proteins during both spontaneous and VAA-I-induced neutrophil apoptosis was also investigated. Paxillin and vimentin were markedly degraded by VAA-I when compared with neutrophils that undergo spontaneous apoptosis, but not vinculin or α- and β-tubulin. Caspases were involved in cytoskeletal protein degradation because preincubation with the pan-caspase inhibitor N-benzyloxycarbonyl-V-A-D-O-methylfluoromethyl ketone was found to reverse protein cleavage. We conclude that VAA-I needs to be internalized to mediate apoptosis and that its activity is not dependent on a cell surface receptor-mediated pathway. Also, we conclude that VAA-I induces apoptosis by ROS-independent and Mcl-1-dependent mechanisms and that caspases are involved in cytoskeletal protein degradation in both spontaneous and VAA-I-induced neutrophil apoptosis.
Hereditary sensory and autonomic neuropathy type II (HSANII) is a rare autosomal-recessive disorder characterized by peripheral nerve degeneration resulting in a severe distal sensory loss. Although mutations in FAM134B and the HSN2 exon of WNK1 were associated with HSANII, the etiology of a substantial number of cases remains unexplained. In addition, the functions of WNK1/HSN2 and FAM134B and their role in the peripheral nervous system remain poorly understood. Using a yeast two-hybrid screen, we found that KIF1A, an axonal transporter of synaptic vesicles, interacts with the domain encoded by the HSN2 exon. In parallel to this screen, we performed genome-wide homozygosity mapping in a consanguineous Afghan family affected by HSANII and identified a unique region of homozygosity located on chromosome 2q37.3 and spanning the KIF1A gene locus. Sequencing of KIF1A in this family revealed a truncating mutation segregating with the disease phenotype. Subsequent sequencing of KIF1A in a series of 112 unrelated patients with features belonging to the clinical spectrum of ulcero-mutilating sensory neuropathies revealed truncating mutations in three additional families, thus indicating that mutations in KIF1A are a rare cause of HSANII. Similarly to WNK1 mutations, pathogenic mutations in KIF1A were almost exclusively restricted to an alternatively spliced exon. This study provides additional insights into the molecular pathogenesis of HSANII and highlights the potential biological relevance of alternative splicing in the peripheral sensory nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.