The continuous monitoring of rheological parameters of industrial fluids during production is of paramount importance for process and quality control. Up to now, no system capable of a complete and non-invasive in-line measurement is commercially available, so that only time discrete laboratory measurements on fluids specimens are possible. In this work a new, fully integrated ultrasound system for in-line fluid characterization, named Flow-Viz, is presented. The system measures the velocity profile of the fluid moving in a pipe through pulsed Doppler ultrasound, and combines it with the pressure drop. The electronics, featuring two ultrasound transmission/reception channels used alone or in pitch-catch configuration, includes powerful digital processing capabilities for real-time velocity profile calculation, and is fully programmable. Particular attention is paid to low-noise design for achieving the optimal performance in highly attenuating suspensions. An application is presented where the system, coupled to a non-invasive ultrasound sensor unit, performs in-line rheological measurements through the wall of a high-grade stainless steel pipe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.