Configuration changes are a common source of instability in networks, leading to outages, performance disruptions, and security vulnerabilities. Even when the initial and final configurations are correct, the update process itself often steps through intermediate configurations that exhibit incorrect behaviors. This paper introduces the notion of consistent network updates-updates that are guaranteed to preserve well-defined behaviors when transitioning between configurations. We identify two distinct consistency levels, per-packet and per-flow, and we present general mechanisms for implementing them in Software-Defined Networks using switch APIs like OpenFlow. We develop a formal model of OpenFlow networks, and prove that consistent updates preserve a large class of properties. We describe our prototype implementation, including several optimizations that reduce the overhead required to perform consistent updates. We present a verification tool that leverages consistent updates to significantly reduce the complexity of checking the correctness of network control software. Finally, we describe the results of some simple experiments demonstrating the effectiveness of these optimizations on example applications.
In many areas of computing, techniques ranging from testing to formal modeling to full-blown verification have been successfully used to help programmers build reliable systems. But although networks are critical infrastructure, they have largely resisted analysis using formal techniques. Software-defined networking (SDN) is a new network architecture that has the potential to provide a foundation for network reasoning, by standardizing the interfaces used to express network programs and giving them a precise semantics.This paper describes the design and implementation of the first machine-verified SDN controller. Starting from the foundations, we develop a detailed operational model for OpenFlow (the most popular SDN platform) and formalize it in the Coq proof assistant. We then use this model to develop a verified compiler and run-time system for a high-level network programming language. We identify bugs in existing languages and tools built without formal foundations, and prove that these bugs are absent from our system. Finally, we describe our prototype implementation and our experiences using it to build practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.