GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeats that is unique to GABAB1a. Using a combined genetic, physiological, and morphological approach, we now demonstrate that GABAB1 isoforms localize to distinct synaptic sites and convey separate functions in vivo. At hippocampal CA3-to-CA1 synapses, GABAB1a assembles heteroreceptors inhibiting glutamate release, while predominantly GABAB1b mediates postsynaptic inhibition. Electron microscopy reveals a synaptic distribution of GABAB1 isoforms that agrees with the observed functional differences. Transfected CA3 neurons selectively express GABAB1a in distal axons, suggesting that the sushi repeats, a conserved protein interaction motif, specify heteroreceptor localization. The constitutive absence of GABAB1a but not GABAB1b results in impaired synaptic plasticity and hippocampus-dependent memory, emphasizing molecular differences in synaptic GABAB functions.
GABA B receptor subtypes are based on the subunit isoforms GABA B1a and GABA B1b , which associate with GABA B2 subunits to form pharmacologically indistinguishable GABA B(1a,2) and GABA B(1b,2) receptors. Studies with mice selectively expressing GABA B1a or GABA B1b subunits revealed that GABA B(1a,2) receptors are more abundant than GABA B(1b,2) receptors at glutamatergic terminals. Accordingly, it was found that GABA B(1a,2) receptors are more efficient than GABA B(1b,2) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen. Here, we used a combination of genetic, ultrastructural and electrophysiological approaches to analyze to what extent GABA B(1a,2) and GABA B(1b,2) receptors inhibit glutamate release in response to physiological activation. We first show that at hippocampal mossy fiber (MF)-CA3 pyramidal neuron synapses more GABA B1a than GABA B1b protein is present at presynaptic sites, consistent with the findings at other glutamatergic synapses. In the presence of baclofen at concentrations Ն1 M, both GABA B(1a,2) and GABA B(1b,2) receptors contribute to presynaptic inhibition of glutamate release. However, at lower concentrations of baclofen, selectively GABA B(1a,2) receptors contribute to presynaptic inhibition. Remarkably, exclusively GABA B(1a,2) receptors inhibit glutamate release in response to synaptically released GABA. Specifically, we demonstrate that selectively GABA B(1a,2) receptors mediate heterosynaptic depression of MF transmission, a physiological phenomenon involving transsynaptic inhibition of glutamate release via presynaptic GABA B receptors. Our data demonstrate that the difference in GABA B1a and GABA B1b protein levels at MF terminals is sufficient to produce a strictly GABA B1a -specific effect under physiological conditions. This consolidates that the differential subcellular localization of the GABA B1a and GABA B1b proteins is of regulatory relevance.
Evidence is presented indicating that the induction of long-term depression (LTD) in Purkinje cells (PCs) requires a rapidly turned over protein(s) during a critical time period within 15 min after the onset of LTD-inducing stimulation and that synthesis of this protein is maintained by mRNAs supplied via transcription. LTD was induced in granule cell axon (GA)-to-PC synapses by stimulation of these synapses at 1 Hz for 5 min in conjunction with the climbing fibers (CFs) forming synapses on the same PCs and represented by a persistent reduction in the GA-induced excitatory postsynaptic potentials (EPSPs). Not only a prolonged but also a brief (5 min) pulse application of translational inhibitors (anisomycin, puromycin, or cycloheximide) effectively blocked the LTD induction. Pulses applied during the period from 30 min before to 10 min after the onset of conjunctive stimulation blocked the LTD induction, but those applied 15 min after were ineffective. The three translational inhibitors blocked the LTD induction similarly, suggesting that the effect is due to their common action of inhibiting protein synthesis. Infusion of a mRNA cap analogue (7-methyl GTP) into PCs also blocked LTD induction, ensuring that the postsynaptic protein synthesis within PCs is required for LTD induction. Transcriptional inhibitors, actinomycin D and 5,6-dichloro-l-beta-D-ribofuranosyl-benzimidazole, also blocked the LTD induction, but this effect was apparent when 5-min pulses of the transcriptional inhibitors preceded the conjunctive stimulation by 30 min or more. This time lag of 30 min is presumed to be required for depletion of the protein(s) required for LTD induction. The presently observed effects of translational and transcriptional inhibitors on the LTD induction are of temporal characteristics corresponding to their depressant effects on the type-1 metabotropic glutamate-receptor (mGluR1)-mediated slow EPSPs in PCs as we have reported recently. An antagonist of mGluR1s [(RS)-1-aminoindan-1,5-dicarboxylic acid], however, did not block LTD induction when it was applied during the 10-min period following conjunctive stimulation, where translational inhibitors effectively blocked LTD induction. This discrepancy in time course suggests that the rapidly turned over protein(s) required for LTD induction is involved in a process occurring downstream of the activation of mGluR1s.
GABA(B) receptors are the G-protein-coupled receptors for the neurotransmitter GABA. GABA(B) receptors are broadly expressed in the nervous system. Their complete absence in mice causes premature lethality or--when mice are viable--epilepsy, impaired memory, hyperalgesia, hypothermia, and hyperactivity. A spatially and temporally restricted loss of GABA(B) function would allow addressing how the absence of GABA(B) receptors leads to these diverse phenotypes. To permit a conditional gene inactivation, we flanked critical exons of the GABA(B(1)) gene with lox511 sites. GABA(B(1)) (lox511/lox511) mice exhibit normal levels of GABA(B(1)) protein, are fertile, and do not display any behavioral phenotype. We crossed GABA(B(1)) (lox511/lox511) with Cre-deleter mice to produce mice with an unrestricted GABA(B) receptor elimination. These GABA(B(1)) (-/-) mice no longer synthesize GABA(B(1)) protein and exhibit the expected behavioral abnormalities. The conditional GABA(B(1)) allele described here is therefore suitable for generating mice with a site- and time-specific loss of GABA(B) function.
Underlying the complexity of the mammalian brain is its network of neuronal connections, but also the molecular networks of signaling pathways, protein interactions, and regulated gene expression within each individual neuron. The diversity and complexity of the spatially intermingled neurons pose a serious challenge to the identification and quantification of single neuron components. To address this challenge, we present a novel approach for the study of the ribosome-associated transcriptome-the translatome-from selected subcellular domains of specific neurons, and apply it to the Purkinje cells (PCs) in the rat cerebellum. We combined microdissection, translating ribosome affinity purification (TRAP) in nontransgenic animals, and quantitative nanoCAGE sequencing to obtain a snapshot of RNAs bound to cytoplasmic or rough endoplasmic reticulum (rER)-associated ribosomes in the PC and its dendrites. This allowed us to discover novel markers of PCs, to determine structural aspects of genes, to find hitherto uncharacterized transcripts, and to quantify biophysically relevant genes of membrane proteins controlling ion homeostasis and neuronal electrical activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.