Here we report the morpho-functional features of a novel type of deep-layer neuron. The neuron was selected from a large pool of intracellularly labelled cells based on the large cell body, numerous spine-free dendrites with an overall interneuron morphology. However, the axon gave off long-range axons up to 2.8 mm from the parent soma in layers 5/6 before entering the white matter. The boutons were uniformly distributed along the axon without forming distinct clusters. Dendritic length, surface area and volume values were at least 3 times larger than any known cortical neuron types with the exception of giant pyramidal cells of layer 5. Electron microscopy of the boutons revealed that they targeted dendritic spines (78%) and less frequently dendritic shafts (22%). Nearly half of the postsynaptic dendrites were immunopositive to GABA. Superimposing the axonal field on the orientation map obtained with optical imaging showed a preponderance of boutons to cross-orientations (38%) and an equal representation of iso- and oblique orientations (31%). The results suggest an integrating role for the layer 6 stellate neuron which projects to a functionally broad range of neurons in the deep cortical layers and to other cortical and/or subcortical regions.
The mirror technique adapted for electron microscopy allows correlating neuronal structures across the cutting plane of adjoining light microscopic sections which, however, have a limited thickness, typically less than 100 µm (Talapka et al. in Front Neuroanat, 2021, 10.3389/fnana.2021.652422). Here, we extend the mirror technique for tissue blocks in the millimeter range and demonstrate compatibility with serial block-face electron microscopy (SBEM). An essential step of the methodological improvement regards the recognition that unbound resin must be removed from the tissue surface to gain visibility of surface structures. To this, the tissue block was placed on absorbent paper during the curing process. In this way, neuronal cell bodies could be unequivocally identified using epi-illumination and confocal microscopy. Thus, the layout of cell bodies which were cut by the sectioning plane can be correlated with the layout of their complementary part in the adjoining section processed for immunohistochemistry. The modified mirror technique obviates the spatial limit in investigating synaptology of neurochemically identified structures such as neuronal processes, dendrites and axons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.