Maintenance and reliability professionals in the manufacturing industry have the primary goal of improving asset availability. Poor and fewer maintenance strategies can result in lower productivity of machinery. At the same time unplanned downtimes due to frequent maintenance activities can lead to financial loss. This has put organizations’ thought process into a trade-off situation to choose between extending the remaining functional life of the equipment at the risk of taking machine down (run-to-failure) or attempting to improve uptime by carrying out early and periodic replacement of potentially good parts which could have run successfully for a few more cycles. Predictive maintenance (PdM) aims to break these tradeoffs by empowering manufacturers to improve the remaining useful life of their machines and at the same time avoiding unplanned downtime and decreasing planned downtime. Anomaly detection lies at the core of PdM with the primary focus on finding anomalies in the working equipment at early stages and alerting the manufacturing supervisor to carry out maintenance activity. This paper describes the challenges in traditional anomaly detection strategies and propose a novel deep learning technique to predict abnormalities ahead of actual failure of the machinery.
Remaining Useful Life (RUL) estimation of rotating machinery based on their degradation data is vital for machine supervisors. Deep learning models are effective and popular methods for forecasting when rotating machinery such as bearings may malfunction and ultimately break down. During healthy functioning of the machinery, however, RUL is ill-defined. To address this issue, this study recommends using anomaly monitoring during both RUL estimator training and operation. Essential time-domain data is extracted from the raw bearing vibration data, and deep learning models are used to detect the onset of the anomaly. This further acts as a trigger for data-driven RUL estimation. The study employs an unsupervised clustering approach for anomaly trend analysis and a semi-supervised method for anomaly detection and RUL estimation. The novel combined deep learning-based anomaly-onset aware RUL estimation framework showed enhanced results on the benchmarked PRONOSTIA bearings dataset under non-varying operating conditions. The framework consisting of Autoencoder and Long Short Term Memory variants achieved an accuracy of over 90% in anomaly detection and RUL prediction. In the future, the framework can be deployed under varying operational situations using the transfer learning approach.
The digital age has given rise to a new form of bullying, termed cyberbullying. A majority of teens use some sort of social media service, thus leading to cyber bullying becoming quite rampant and in some extreme cases, also resulting in victim suicides. In this paper, we aim to show the results of the system we designed for the automatic monitoring and prevention of cyberbullying. The response grading system takes into account the severity of bullying and gives appropriate responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.