The search for effective coronavirus disease (COVID-19) therapy has attracted a great deal of scientific interest due to its unprecedented health care system overload worldwide. We have carried out a study to investigate the in silico effects of the most abundant pomegranate peel extract constituents on the multi-step process of serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) internalization in the host cells. Binding affinities and interactions of ellagic acid, gallic acid, punicalagin and punicalin were studied on four selected protein targets with a significant and confirmed role in the process of the entry of virus into a host cell. The protein targets used in this study were: SARS-CoV-2 spike glycoprotein, angiotensin-converting enzyme 2, furin and transmembrane serine protease 2. The results showed that the constituents of pomegranate peel extracts, namely punicalagin and punicalin had very promising potential for significant interactions with the selected protein targets and were therefore deemed good candidates for further in vitro and in vivo evaluation.
Background: Type 2 diabetes mellitus (T2DM) is commonly associated with hyperglycemia, dyslipidemia, oxidative stress and inflammation which are well known cardiovascular risk factors. Pomegranate peel polyphenols have a proven hypolipemic, antioxidant and anti-inflammatory activity. However, there is a lack of clinical studies that would confirm its antioxidant and anti-inflammatory effects in diabetic patients. The potential of pomegranate peel extract (PoPEx) to counteract inflammation and oxidative stress in T2DM patients was investigated. For this purpose, a randomized, double-blind placebo-controlled study involving adult T2DM patients treated with PoPEx or placebo for eight-weeks was conducted. Methods: Patients were randomly divided into two groups: the first group (n = 30) received capsules containing PoPEx 250 mg twice daily, while the placebo group (n = 30) received placebo capsules twice daily. Plasma concentration of inflammatory factors (interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and high sensitivity C reactive protein (hsCRP)), oxidative stress biomarkers (thiobarbituric acid reactive substances (TBARS), nitrites (NO2 − ), superoxide anion radical (O2 − ), hydrogen peroxide (H2O2), total antioxidant capacity (TAC)), homocysteine and lipid profile were analyzed. Results: The PoPEx treatment showed a significant reduction of inflammatory factors (IL-6, TNF-α, hsCRP), oxidative stress biomarkers (TBARS, NO2 − , O2 − ) and homocysteine, while the TAC was increased. Moreover, a significant improvement in lipid profile was observed in the PoPEx group. Additional analysis showed a significant inverse correlation between the decrements of all measured inflammatory markers and TAC in the PoPEx group. Conclusions: The study demonstrated that eight-week-long PoPEx administration had favorable effects on inflammatory status and oxidative stress biomarkers in diabetic patients.
The present paper describes environmental and seasonal-related chemical composition variations, vasorelaxant and angiotensin I-converting enzyme (ACE) activities of essential oil from aerial parts of Seseli pallasii BESSER. The composition was analyzed by GC and GC/MS. Monoterpenes were found to be the most abundant chemical class with a-pinene (42.7 -48.2%) as the most prevalent component. Seseli pallasi essential oil relaxed isolated endothelium-intact mesenteric arteries rings precontracted with phenylephrine with IC 50 = 3.10 nl/ml (IC 50 = 2.70 lg/ ml). Also, S. pallasii essential oil was found to exhibit a dose-dependent ACE inhibitory activity with an IC 50 value of 0.33 mg/ml. In silico evaluation of ACE inhibitory activity of the individual components showed that spathulenol exhibited the best binding affinity with ACE, and the lowest binding energy of À7.5 kcal/mol. The results suggested that combination of vasorelaxing and ACE inhibitory effects of the analyzed S. pallasii essential oil might have the potential therapeutic significance in hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.