As the COVID-19 pandemic has forced many to work remotely from home, collaborating solely through digital technologies, a growing population of remote home workers are faced with profound wellbeing challenges. Passive sensing devices and ambient feedback have great potential to support the wellbeing of the remote workers, but there is a lack of background and understanding of the domestic workplace in terms of physical and affective dimensions and challenges to wellbeing. There are profound research gaps on wellbeing in the domestic workplace, with the current push for remote home and hybrid working making this topic timely. To address these gaps and shape a starting point for an “ambient workspaces” agenda, we conducted an exploratory study to map physical and affective aspects of working from home. The study involved both qualitative and quantitative measures of occupant experience, including sensor wristbands, and a custom web application for self-reporting mood and aspects of the environment. It included 13 participants for a period of 4 weeks, during a period of exclusive home working. Based on quantitative and qualitative analysis, our study addresses wellbeing challenges of the domestic workplace, establishes correlations between mood and physical aspects, and discusses the impact of feedback mechanisms in the domestic workplace on the behavior of remote workers. Insights from these observations are then used to inform a future design agenda for ambient technologies that supports the wellbeing of remote workers; addressing the design opportunities for ambient interventions in domestic workspaces. This work offers three contributions: 1) qualitatively and quantitatively informed understandings of the experiences of home-workers; 2) a future design agenda for “ambient home workspaces”; and 3) we propose three design concepts for ambient feedback and human–AI interactions in the built environment, to illustrate the utility of the design agenda.
Clinicians and scientists often focus on tracking the recovery of motor skills after spinal cord injury (SCI), but less attention is paid to the recovery of sensory skills. Measures of sensory function are imperative for evaluating the efficacy of treatments and therapies. Proprioception is one sensory modality that provides information about static position and movement sense. Because of its critical contribution to motor control, proprioception should be measured during the course of recovery after neurological injury. Current clinical methods to test proprioception are limited to crude, manual tests of movement and position sense. The purpose of this study was to develop a quantitative assessment tool to measure joint position sense in the legs. We used the Lokomat, a robotic exoskeleton, and custom software to assess joint position sense in the hip and knee in 9 able-bodied (AB) subjects and 1 person with incomplete SCI. We used two different test paradigms. Both required the subject to move the leg to a target angle, but the presentation of the target was either a remembered or visual target angle. We found that AB subjects had more accurate position sense in the remembered task than in the visual task, and that they tended to have greater accuracy at the hip than at the knee. Position sense of the subject with SCI was comparable to those of the AB subjects. We show that using the Lokomat to assess joint position sense may be an effective clinical measurement tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.