Linking microscopic and macroscopic behavior is at the heart of many natural and social sciences. This apparent similarity conceals essential differences across disciplines: Although physical particles are assumed to optimize the global energy, economic agents maximize their own utility. Here, we solve exactly a Schellinglike segregation model, which interpolates continuously between cooperative and individual dynamics. We show that increasing the degree of cooperativity induces a qualitative transition from a segregated phase of low utility toward a mixed phase of high utility. By introducing a simple function that links the individual and global levels, we pave the way to a rigorous approach of a wide class of systems, where dynamics are governed by individual strategies.socioeconomy | statistical physics | segregation | phase transition | coordination T he intricate relations between the individual and collective levels are at the heart of many natural and social sciences. Different disciplines wonder how atoms combine to form solids (1, 2), neurons give rise to consciousness (3, 4), or individuals shape societies (5, 6). However, scientific fields assume distinct points of view for defining the "normal", or "equilibrium", aggregated state. Physics looks at the collective level, selecting the configurations that minimize the global free energy (2). In contrast, economic agents behave in a selfish way, and equilibrium is attained when no agent can increase its own satisfaction (7). Although similar at first sight, the two approaches lead to radically different outcomes.In this paper, we illustrate the differences between collective and individual dynamics on an exactly solvable model similar to Schelling's segregation model (8). The model considers individual agents that prefer a mixed environment, with dynamics that lead to segregated or mixed patterns at the global level. A "tax" parameter monitors continuously the agents' degree of altruism or cooperativity, i.e., their consideration of the global welfare. At high degrees of cooperativity, the system is in a mixed phase of maximal utility. As the altruism parameter is decreased, a phase transition occurs, leading to segregation. In this phase, the agents' utilities remain low, in spite of continuous efforts to maximize their satisfaction. This paradoxical result of Schelling's segregation model (8) has generated an abundant literature. Many papers have simulated how the global state depends on specific individual utility functions, as reviewed by ref. 9. There have been attempts at solving Schelling's model analytically, in order to provide more general results (10, 11). However, these approaches are limited to specific utility functions. More recently, physicists have tried to use a statistical physics approach to understand the segregation transition (12-14). The idea seems promising because statistical physics has successfully bridged the micro-macro gap for physical systems governed by collective dynamics. However, progress was slowed by lack of an appr...
The size and form of cities influence their social and environmental impacts. Whether cities have the same form irrespective of their size is still an open question. We analyse the profile of artificial land and population density, with respect to the distance to their main centre, for the 300 largest European cities. Our analysis combines the GMES/Copernicus Urban Atlas 2006 land use database at 5 m resolution for 300 larger urban zones with more than 100,000 inhabitants and the Geostat population grid at 1 km resolution. We find a remarkable constancy of radial profiles across city sizes. Artificial land profiles scale in the two horizontal dimensions with the square root of city population, while population density profiles scale in three dimensions with its cube root. In short, cities of different size are homothetic in terms of land use and population density, which challenges the idea that larger cities are more parsimonious in the use of land per capita. While earlier literature documented the scaling of average densities (total surface and population) with city size, we document the scaling of the whole radial distance profile with city size, thus liaising intra-urban radial analysis and systems of cities. Our findings also yield homogenous spatial definitions of cities, from which we can re-question urban scaling laws and Zipf’s law for cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.