In this paper we argue that the new availability of digital data sets allows one to revisit Gabriel Tarde's (1843-1904) social theory that entirely dispensed with using notions such as individual or society. Our argument is that when it was impossible, cumbersome or simply slow to assemble and to navigate through the masses of information on particular items, it made sense to treat data about social connections by defining two levels: one for the element, the other for the aggregates. But once we have the experience of following individuals through their connections (which is often the case with profiles) it might be more rewarding to begin navigating datasets without making the distinction between the level of individual component and that of aggregated structure. It becomes possible to give some credibility to Tarde's strange notion of 'monads'. We claim that it is just this sort of navigational practice that is now made possible by digitally available databases and that such a practice could modify social theory if we could visualize this new type of exploration in a coherent way.
The size of cities is known to play a fundamental role in social and economic life. Yet, its relation to the structure of the underlying network of human interactions has not been investigated empirically in detail. In this paper, we map society-wide communication networks to the urban areas of two European countries. We show that both the total number of contacts and the total communication activity grow superlinearly with city population size, according to well-defined scaling relations and resulting from a multiplicative increase that affects most citizens. Perhaps surprisingly, however, the probability that an individual's contacts are also connected with each other remains largely unaffected. These empirical results predict a systematic and scale-invariant acceleration of interaction-based spreading phenomena as cities get bigger, which is numerically confirmed by applying epidemiological models to the studied networks. Our findings should provide a microscopic basis towards understanding the superlinear increase of different socioeconomic quantities with city size, that applies to almost all urban systems and includes, for instance, the creation of new inventions or the prevalence of certain contagious diseases.
Linking microscopic and macroscopic behavior is at the heart of many natural and social sciences. This apparent similarity conceals essential differences across disciplines: Although physical particles are assumed to optimize the global energy, economic agents maximize their own utility. Here, we solve exactly a Schellinglike segregation model, which interpolates continuously between cooperative and individual dynamics. We show that increasing the degree of cooperativity induces a qualitative transition from a segregated phase of low utility toward a mixed phase of high utility. By introducing a simple function that links the individual and global levels, we pave the way to a rigorous approach of a wide class of systems, where dynamics are governed by individual strategies.socioeconomy | statistical physics | segregation | phase transition | coordination T he intricate relations between the individual and collective levels are at the heart of many natural and social sciences. Different disciplines wonder how atoms combine to form solids (1, 2), neurons give rise to consciousness (3, 4), or individuals shape societies (5, 6). However, scientific fields assume distinct points of view for defining the "normal", or "equilibrium", aggregated state. Physics looks at the collective level, selecting the configurations that minimize the global free energy (2). In contrast, economic agents behave in a selfish way, and equilibrium is attained when no agent can increase its own satisfaction (7). Although similar at first sight, the two approaches lead to radically different outcomes.In this paper, we illustrate the differences between collective and individual dynamics on an exactly solvable model similar to Schelling's segregation model (8). The model considers individual agents that prefer a mixed environment, with dynamics that lead to segregated or mixed patterns at the global level. A "tax" parameter monitors continuously the agents' degree of altruism or cooperativity, i.e., their consideration of the global welfare. At high degrees of cooperativity, the system is in a mixed phase of maximal utility. As the altruism parameter is decreased, a phase transition occurs, leading to segregation. In this phase, the agents' utilities remain low, in spite of continuous efforts to maximize their satisfaction. This paradoxical result of Schelling's segregation model (8) has generated an abundant literature. Many papers have simulated how the global state depends on specific individual utility functions, as reviewed by ref. 9. There have been attempts at solving Schelling's model analytically, in order to provide more general results (10, 11). However, these approaches are limited to specific utility functions. More recently, physicists have tried to use a statistical physics approach to understand the segregation transition (12-14). The idea seems promising because statistical physics has successfully bridged the micro-macro gap for physical systems governed by collective dynamics. However, progress was slowed by lack of an appr...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.