Additive manufacturing of electronic devices is challenging because plastics and metals, which are both required as insulator and conductor, respectively, have very distinct thermal properties. Despite significant research efforts, the currently available electronic-printing methods are still limited by low printing speeds and high manufacturing costs. In this work, a hybrid printing method is proposed that combines fused deposition modeling (FDM) with laser sintering to print thermoplastics and copper in a single process. A copper and copper-oxide composite filament is developed that is compatible with FDM printing. The composite undergoes in situ reduction under laser exposure and produces a highly conductive copper network. Using the home-developed 3D printer, 3D conductive vias embedded in thermoplastic dielectric are demonstrated. The printed copper electrodes have low resistivity of 4 × 10 −4 𝛀 cm and are compatible with soldering. This novel metal-deposition approach and setup prove a novel concept for developing modern electronics using additive manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.