Hypersialylation of tumor cell surface proteins along with a marked upregulation of sialyltransferase (ST) activity is a well-established hallmark of cancer. Due to the critical role of STs in tumor growth and progression, ST inhibition has emerged as a potential new antimetastatic strategy for a range of cancers including pancreatic and ovarian. Human STs are divided into subtypes based on their linkage and acceptor molecule, with each subtype controlling the synthesis of specific sialylated structures with unique biological roles. This has important implications for inhibitor development, as STs also play significant roles in immune responses, inflammation, viral infection, and neurological disorders. Thus, the current goal in order to advance to the clinic is the development of subtype selective, cell-permeable and synthetically accessible, smallmolecule ST inhibitors. Herein is a comprehensive review of the latest developments in ST inhibitors from design, Nature, and high-throughput screening, addressing both the challenges and opportunities in targeting cell surface sialylation. The review features an overview of the biological evaluation methods, computational and imaging tools, inhibitor molecular diversity, and selectivity toward ST subtypes, along with the emerging role of ST inhibitors as diagnostic tools for disease imaging.
Human β-galactoside α-2,6-sialyltransferase I (hST6Gal I) catalyses the synthesis of sialylated glycoconjugates involved in cell-cell interactions. Overexpression of hST6Gal I is observed in many different types of cancers, where it promotes metastasis through altered cell surface sialylation. A wide range of sialyltransferase (ST) inhibitors have been developed based on the natural donor, cytidine 5′-monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). Of these, analogues that are structurally similar to the transition state exhibit the highest inhibitory activity. In order to design inhibitors that are readily accessible synthetically and with favourable pharmacokinetic properties, an investigation of the replacement of the charged phosphodiesterlinker, present in many ST inhibitors, with a potential neutral isostere such as a carbamate or a 1,2,3-triazole has been undertaken. To investigate this, molecular docking and molecular dynamics simulations were performed. These simulations provided an insight into the binding mode of previously reported phosphodiester-linked ST inhibitors and demonstrated that targeting the proposed sialyl acceptor site is a viable option for producing selective inhibitors. The potential for a carbamate-or triazole-linker as an isosteric replacement for the phosphodiester in transition-state analogue ST inhibitors was established using molecular docking. Molecular dynamics simulations of carbamate-and phosphodiester-linked compounds revealed that both classes exhibit consistent interactions with hST6Gal I. Overall, the results obtained from this study provide a rationale for synthetic and biological evaluation of triazole-and carbamate-linked transition-state analogue ST inhibitors as potential new antimetastatic agents. Disciplines Medicine and Health Sciences | Social and Behavioral SciencesPublication Details Montgomery, A., Szabo, R., Skropeta, D. & Yu, H. (2016)
Sialyltransferase (ST) upregulation and the resultant hypersialylation of tumour cell surfaces is an established hallmark of many cancers including lung, breast, ovarian, pancreatic and prostate cancer. The role of ST enzymes in tumour cell growth and metastasis, as well as links to multi-drug resistance, has seen ST inhibition emerge as a target for potential antimetastatic cancer treatments. The most potent of these reported inhibitors are transition-state analogues. Although there are several examples of these in the literature, many have suspected poor pharmacokinetic properties and are not readily synthetically accessible. A proposed solution to these problems is the use of a neutral carbamate or 1,2,3-triazole linker instead of the more commonly used phosphodiester linker, and replacing the traditionally utilised cytidine nucleotide with uridine. Another issue in this area is the paucity of structural information of human ST enzymes. However, in late 2015 the structure of human ST8Sia III was reported (only the second human ST described so far), creating the opportunity for structure-based design of selective ST8 inhibitors for the first time. Herein, molecular docking and molecular dynamics simulations with the newly published crystal structure of hST8Sia III were performed for the first time with selected ST transition state analogues. Simulations showed that these compounds could participate in many of the key interactions common with the natural donor and acceptor substrates, and reveals some key insights into the synthesis of potentially selective ST inhibitors.
Key modifications of previous sialyltransferase inhibitors increased their activity against hST6Gal I and has further implications for synthetically accessible ST inhibitor design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.