A large number of PKC inhibitors are positively charged. We evaluated the structural features of cationic amphiphiles which are necessary for inhibiting PKC. Many of these compounds were derivatives of cholesterol, which possesses a hydrophobic backbone which does not perturb hydrocarbon packing in membrane bilayers. In addition, they contain a tertiary or quaternary nitrogen functionality in the head group. All designed cholesterol-based amphiphiles inhibit PKC activity; the potency of the amphiphile correlates with the presence of positive charge. Quaternary ammonium amphiphiles are 10-fold more potent than their tertiary amine counterparts, generally inhibiting in the 10-60 microM range using the Triton mixed micelle assay. Aside from charge, factors such as the structure of the amine-containing head group, its length from the hydrocarbon moiety, or the number of amine groups on the amphiphile did not markedly influence inhibitor potency. In contrast, the hydrocarbon backbone did influence potency: cationic amphiphiles containing a steroid backbone were more potent inhibitors of PKC than their straight-chain analogues. Changing the nature of the hydrocarbon from a sterol to an alkyl group lowers the pK of the amine head group so that the straight-chain analogues are no longer cationic in the conditions in the PKC assay. The results of these studies suggest that a combination of positive charge and a bilayer-stabilizing structural characteristic provides a basis for the rational design of PKC inhibitors.
Cholesterol lowers the bilayer to hexagonal phase transition temperature of phosphatidylethanolamines up to a mole fraction of about 0.1. At cholesterol mole fractions above about 0.3, the effect of this sterol is to stabilize the bilayer phase. The relatively weak effects of cholesterol in altering the bilayer to hexagonal phase transition temperature can be explained on the basis of lateral phase separation. This is indicated by the horizontal liquidus line for the gel to liquid-crystalline transition in the phase diagram for mixtures of cholesterol with dielaidoylphosphatidylethanolamine (DEPE) as well as the fact that cholesterol does not greatly decrease the cooperativity of the bilayer to hexagonal phase transition. The enthalpy of this latter transition increased with increasing mole fractions of cholesterol. Two oxidation products of cholesterol are 5-cholesten-3 beta,7 alpha-diol and cholestan-3 beta,5 alpha,6 beta-triol. Compared with cholesterol, 5-cholesten-3 beta,7 alpha-diol had a greater effect in decreasing the bilayer to hexagonal phase transition temperature and broadening this transition. It is suggested that its effectiveness is due to its greater solubility in the DEPE. In contrast, cholestan-3 beta,5 alpha,6 beta-triol raises the bilayer to hexagonal phase transition temperature of DEPE. This is due to its larger and more hydrophilic head group. In addition, its length, being shorter than that of DEPE, would not allow it to pack efficiently in a hexagonal phase arrangement. We suggest that this same effect is responsible for cholesterol raising the bilayer to hexagonal phase transition temperature at higher mole fractions.
Cationic liposomes can mediate efficient delivery of DNA and DNA/protein complex to mammalian cells in vitro and in vivo. Cationic cholesterol derivatives mixed with phosphatidylethanolamine and sonicated to form small unilamellar vesicles can complex with DNA and mediate the entry into the cytosol from the endosome compartment. One of the liposome formulations, DC-Chol liposomes, is used in a gene therapy clinical trial for melanoma. Recently, we exploited these cationic liposomes for the delivery of trans-activating protein factors to regulate and control the expression of delivered transgenes in a protein dose-dependent manner. Bacteriophage T7 RNA polymerase was co-delivered with a reporter gene under the control of T7 promoter to allow cytoplasmic expression of the gene. Human immunodeficiency virus-1 transactivating protein was also codelivered with a reporter gene under the control of HIV-1 long terminal repeat. Finally, human tumor cells selected for cis-platin resistance or isolated from patients who have failed cis-platin therapy are highly transfectable with cationic liposomes. These results suggest a serial therapy protocol with cis-platin and gene therapy for malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.