Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
Fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be calculated from the Wigner function in a quantum kinetic approach. Extending previous results for chiral fermions, we derive the Wigner function for massive fermions up to the next-toleading order in spatial gradient expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner function and is found to be proportional to the local vorticity ω. The polarizations per particle for fermions and anti-fermions decrease with the chemical potential and increase with energy (mass). Both quantities approach the asymptotic value ω/4 in the large energy (mass) limit. The polarization per particle for fermions is always smaller than that for anti-fermions, whose ratio of fermions to anti-fermions also decreases with the chemical potential. The polarization per particle on the Cooper-Frye freeze-out hyper-surface can also be formulated and is consistent with the previous result of Becattini et al..
We derive analytical formulas for the equal-time Wigner function in an electromagnetic field of arbitrary strength. While the magnetic field is assumed to be constant, the electric field is assumed to be space-independent and oriented parallel to the magnetic field. The Wigner function is first decomposed in terms of the so-called Dirac-Heisenberg-Wigner (DHW) functions and then the transverse-momentum dependence is separated using a new set of basis functions which depend on the quantum number n of the Landau levels. Equations for the coefficients are derived and then solved for the case of a constant electric field. The pair-production rate for each Landau level is calculated. In the case of finite temperature and chemical potential, the pair-production rate is suppressed by Pauli's exclusion principle.
We propose a microscopic description for the polarization from the first principle through the spin-orbit coupling in particle collisions. The model is different from previous ones based on local equilibrium assumptions for the spin degree of freedom.It is based on scatterings of particles as wave packets, an effective method to deal with particle scatterings at specified impact parameters. The polarization is then the consequence of particle collisions in a non-equilibrium state of spins. The spinvorticity coupling naturally emerges from the spin-orbit one encoded in polarized scattering amplitudes of collisional integrals when one assumes local equilibrium in momentum but not in spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.