Background
The cardiac parameters, such as heart rate (HR) and heart rate variability (HRV), are very important physiological data for daily healthcare. Recently, the camera-based photoplethysmography techniques have been proposed for HR measurement. These techniques allow us to estimate the HR contactlessly with low-cost camera. However, the previous works showed limit success for estimating HRV because the R–R intervals, the primary data for HRV calculation, are sensitive to noise and artifacts.
Methods
This paper proposed a non-contact method to extract the blood volume pulse signal using a chrominance-based method followed by a proposed CWT-based denoising technique. The R–R intervals can then be obtained by finding the peaks in the denoised signal. In this paper, we taped 12 video clips using the frontal camera of a smart phone with different scenarios to make comparisons among our method and the other alternatives using the absolute errors between the estimated HRV metrics and the ones obtained by an ECG-accurate chest band.
Results
As shown in experiments, our algorithm can greatly reduce absolute errors of HRV metrics comparing with the related works using RGB color signals. The mean of absolute errors of HRV metrics from our method is only 3.53 ms for the static-subject video clips.
Conclusions
The proposed camera-based method is able to produce reliable HRV metrics which are close to the ones measured by contact devices under different conditions. Thus, our method can be used for remote health monitoring in a convenient and comfortable way.
Global motion estimation (GME) algorithms are widely applied to computer vision and video processing. In the previous works, the image resolutions are usually low for the real-time requirement (e.g. video stabilization). However, in some mobile devices applications (e.g. image sequence panoramic stitching), the high resolution is necessary to obtain satisfactory quality of panoramic image. However, the computational cost will become too expensive to be suitable for the low power consumption requirement of mobile device. The full search algorithm can obtain the global minimum with extremely computational cost, while the typical fast algorithms may suffer from the local minimum problem. This paper proposed a fast algorithm to deal with 2560 × 1920 high-resolution (HR) image sequences. The proposed method estimates the motion vector by a two-level coarse-to-fine scheme which only exploits sparse reference blocks (25 blocks in this paper) in each level to determine the global motion vector, thus the computational costs are significantly decreased. In order to increase the effective search range and robustness, the predictive motion vector (PMV) technique is used in this work. By the comparisons of computational complexity, the proposed algorithm costs less addition operations than the typical Three-Step Search algorithm (TSS) for estimating the global motion of the HR images without the local minimum problem. The quantitative evaluations show that our method is comparable to the full search algorithm (FSA) which is considered to be the golden baseline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.