Social distancing in response to the COVID-19 pandemic brought several modifications in our daily lives. With these changes, some people have reported alterations in their feelings of how fast time was passing. In this study, we assessed whether and how social distancing and the evolution of the COVID-19 pandemic influenced participants’ time awareness and production of time intervals. Participants ( n = 3855) filled in the first questionnaire approximately 60 days after the start of social distancing in Brazil and weekly questionnaires for 15 weeks during social distancing. Our results indicate that time was perceived as expanded at the beginning, but this feeling decreased across the weeks. Time awareness was strongly associated with psychological factors such as loneliness, stress, and positive emotions, but not with time production. This relation was shown between participants and within their longitudinal reports. Together, our findings show how emotions are a crucial aspect of how time is felt.
BackgroundRecent research suggests that the CA3 subregion of the hippocampus has properties of both autoassociative network, due to its ability to complete partial cues, tolerate noise, and store associations between memories, and heteroassociative one, due to its ability to store and retrieve sequences of patterns. Although there are several computational models of the CA3 as an autoassociative network, more detailed evaluations of its heteroassociative properties are missing.MethodsWe developed a model of the CA3 subregion containing 10,000 integrate-and-fire neurons with both recurrent excitatory and inhibitory connections, and which exhibits coupled oscillations in the gamma and theta ranges. We stored thousands of pattern sequences using a heteroassociative learning rule with competitive synaptic scaling.ResultsWe showed that a purely heteroassociative network model can (i) retrieve pattern sequences from partial cues with external noise and incomplete connectivity, (ii) achieve homeostasis regarding the number of connections per neuron when many patterns are stored when using synaptic scaling, (iii) continuously update the set of retrievable patterns, guaranteeing that the last stored patterns can be retrieved and older ones can be forgotten.DiscussionHeteroassociative networks with synaptic scaling rules seem sufficient to achieve many desirable features regarding connectivity homeostasis, pattern sequence retrieval, noise tolerance and updating of the set of retrievable patterns.
The physical simultaneity between two events can differ from our point of subjective simultaneity (PSS). Studies using simultaneity judgments (SJ) and temporal order judgments (TOJ) tasks have shown that whether two events are reported as simultaneous is highly context-dependent. It has been recently suggested that the interval between the two events in the previous trial can modulate judgments both in SJ and TOJ tasks, an effect named rapid recalibration. In this work, we investigated rapid recalibration in SJ and TOJ tasks and tested whether centering the range of presented intervals on perceived simultaneity modulated this effect. We found a rapid recalibration effect in TOJ, but not in SJ. Moreover, we found that centering the intervals on objective or subjective simultaneity did not change the pattern of results. Interestingly, we also found no correlations between an individual’s PSS in TOJ and in SJ tasks, which corroborates other studies in suggesting that these two psychophysical measures may capture different processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.