BackgroundThe essential oil from Mesosphaerum sidifolium (L’Hérit.) Harley & J.F.B.Pastore (syn. Hyptis umbrosa), Lamiaceae (EOM), and its major component, have been tested for toxicity and antitumor activity.MethodsEOM was obtained from aerial parts of M. sidifolium subjected to hydro distillation, and gas chromatography-mass spectrometry was used to characterize the EOM chemical composition. The toxicity was evaluated using haemolysis assay, and acute toxicity and micronucleus tests. Ehrlich ascites carcinoma model was used to evaluate the in vivo antitumor activity and toxicity of EOM (50, 100 and 150 mg/kg), and fenchone (30 and 60 mg/kg) after 9 d of treatment.ResultsThe EOM major components were fenchone (24.8%), cubebol (6.9%), limonene (5.4%), spathulenol (4.5%), β-caryophyllene (4.6%) and α-cadinol (4.7%). The HC50 (concentration producing 50% haemolysis) was 494.9 μg/mL for EOM and higher than 3000 μg/mL for fenchone. The LD50 for EOM was approximately 500 mg/kg in mice. The essential oil induced increase of micronucleated erythrocytes only at 300 mg/kg, suggesting moderate genotoxicity. EOM (100 or 150 mg/kg) and fenchone (60 mg/kg) reduced all analyzed parameters (tumor volume and mass, and total viable cancer cells). Survival also increased for the treated animals with EOM and fenchone. For EOM 150 mg/kg and 5-FU treatment, most cells were arrested in the G0/G1 phase, whereas for fenchone, cells arrested in the S phase, which represents a blockage in cell cycle progression. Regarding the toxicological evaluation, EOM induced weight loss, but did not induce hematological, biochemical or histological (liver and kidneys) toxicity. Fenchone induced decrease of AST and ALT, suggesting liver damage.ConclusionsThe data showed EOM caused in vivo cell growth inhibition on Ehrlich ascites carcinoma model by inducing cell cycle arrest, without major changes in the toxicity parameters evaluated. In addition, this activity was associated with the presence of fenchone, its major component.
Natural products have played a pivotal role for the discovery of anticancer drugs. Tonantzitlolones are flexibilan-type diterpenes rare in nature; therefore, few reports have shown antiviral and cytotoxic activities. This study aimed to investigate the in vivo antitumor action of Tonantzitlolone B (TNZ-B) and its toxicity. Toxicity was evaluated in mice (acute and micronucleus assays). Antitumor activity of TNZ-B (1.5 or 3 mg/kg intraperitoneally -i.p.) was assessed in Ehrlich ascites carcinoma model. Angiogenesis and reactive oxygen species (ROS) and nitric oxide (NO) production were also investigated, in addition to toxicological effects after 7-day treatment. The LD 50 (lethal dose 50%) was estimated at around 25 mg/kg (i.p.), and no genotoxicity was recorded. TNZ-B reduced the Ehrlich tumor's volume and total viable cancer cell count (p < 0.001 for both). Additionally, TNZ-B reduced peritumoral microvessel density (p < 0.01), suggesting antiangiogenic action. Moreover, a decrease was observed on ROS (p < 0.05) and nitric oxide (p < 0.001) levels. No significant clinical findings were observed in the analysis of biochemical, hematological, and histological (liver and kidney) parameters. In conclusion, TNZ-B exerts antitumor and antiangiogenic effects by reducing ROS and NO levels and has weak in vivo dose-repeated toxicity. These data contribute to elucidate the antitumor action of TNZ-B and point the way for further studies with this natural compound as an anticancer drug.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.