Large gold provinces commonly show complicated mineralization histories, and the Paleoproterozoic Alta Floresta, one of Brazil's most exciting Au-Cu mineral provinces, is a good example. The current models defined four deposit types, all connected to a single (1.88-1.75 Ga) magmatic-hydrothermal event. However, long Province history, diverse geodynamic environment, and older ages of Type-1mineralisation weaken the single metallogenic event and enable the hypothesis of overprinted mineral events. By scale-integrated analyses, we revise the tectonic-geological context, structural-hydrothermal alterations, and chlorite-white mica geothermobarometer and propose the type-1 as an older, granitoid-hosted orogenic mineralisation, with subsequent overprinting by the magmatic-hydrothermal event. The older orogenic gold event developed orogenic gold deposits on WNW-trending shear zones in the Peixoto de Azevedo domain granitic-gneiss rocks. Phengite, biotite, chlorite-carbonate phyllonites (3.3-6.1 kbar, 300º-420ºC) host fault-fill quartz veins (pyrite-chalcopyrite-magnetite-pyrrhotite-gold-Bi-Ag tellurides). Mg-rich chlorite-phengite is the main alteration footprint for this mineralisation type. A younger magmatic-hydrothermal event in the Juruena magmatic-arc rocks produced Fe-rich chlorite-white mica alteration zones (0.6-4.6 kbar, 120º-380ºC) and disseminated and stockwork-breccia ore (pyrite-chalcopyrite-gold-molybdenite- Ti minerals-allanite) in porphyry-epithermal deposits. Where the younger mineralisation overprints the older, phyllic alteration destroyed the phengite orogenic gold phyllonite Sn+1 foliation. The ages of two pyrite populations (1979 and 1841 Ma) in the older fault-fill veins and molybdenite in late fractures (1805-1782 Ma) or disseminated in the ca. 1.79 Ga syenogranite porphyry suggest more than two episodes of mineralisation. These two events differ in their alteration styles, P-T conditions, and structural, mineralogical, and textural ore styles. The multi-scale approach enlightens the relationships between the various mineralisation events, allowing a new explorational potential within the province.Supplementary material at https://doi.org/10.6084/m9.figshare.c.6056324
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.