1. In recent years the focus in ecology has shifted from species to a greater emphasis on functional traits. In tandem with this shift, a number of trait databases have been developed covering a range of taxa. Here, we introduce the GlobalAnts database.2. Globally, ants are dominant, diverse and provide a range of ecosystem functions. The database represents a significant tool for ecology in that it (i) contributes to a global archive of ant traits (morphology, ecology and life history) which complements existing ant databases and (ii) promotes a trait-based approach in ant and other insect ecology through a broad set of standardised traits.3. The GlobalAnts database is unique in that it represents the largest online database of functional traits with associated georeferenced assemblage-level data (abundance and/or occupancy) for any animal group with 9056 ant species and morphospecies records for entire local assemblages across 4416 sites. 4. We describe the structure of the database, types of traits included and present a summary of data coverage. The value of the database is demonstrated through an initial examination of trait distributions across subfamilies, continents and biomes.5. Striking biogeographic differences in ant traits are highlighted which raise intriguing questions as to the mechanisms generating them.
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities.
Global extinction drivers, including habitat disturbance and climate change, are thought to affect larger species more than smaller species. However, it is unclear if such drivers interact to affect assemblage body size distributions. We asked how these two key global change drivers differentially affect the interspecific size distributions of ants, one of the most abundant and ubiquitous animal groups on earth. We also asked whether there is evidence of synergistic interactions and whether effects are related to species’ trophic roles. We generated a global dataset on ant body size from 333 local ant assemblages collected by the authors across a broad range of climates and in disturbed and undisturbed habitats. We used head length (range: 0.22–4.55 mm) as a surrogate of body size and classified species to trophic groups. We used generalized linear models to test whether body size distributions changed with climate and disturbance, independent of species richness. Our analysis yielded three key results: 1) climate and disturbance showed independent associations with body size; 2) assemblages included more small species in warmer climates and fewer large species in wet climates; and 3) both the largest and smallest species were absent from disturbed ecosystems, with predators most affected in both cases. Our results indicate that temperature, precipitation and disturbance have differing effects on the body size distributions of local communities, with no evidence of synergistic interactions. Further, both large and small predators may be vulnerable to global change, particularly through habitat disturbance.
Understanding the factors that drive species richness and composition at multiple scales is of crucial importance for conservation. Here we evaluated how habitat heterogeneity-at the local and landscape scales-affects the diversity of ants in the Brazilian Cerrado. The Cerrado is a biodiversity hotspot that is characterized as a mosaic of habitats, including savannas of variable structure (the dominant vegetation), grasslands, and forests. We sampled ground-dwelling ants in four habitats, representing a gradient of increasing tree cover and decreasing grass cover. Twelve sites, distributed along two degrees of latitude, were sampled. Our sampling revealed a highly diverse and patchily distributed fauna comprising 150 species (from 44 genera), of which nearly 40% were found in only one site. On average, we found fewer species in the least structurally complex habitat. However, there was relatively little variation in species density among the remaining habitats despite strong differences in vegetation structure among them. Ant species composition varied markedly among sites and such differences were related to variations in vegetation structure but not to inter-site distances (latitude). Similar results were obtained when overall ant species richness (c diversity) was partitioned additively into three components: a 1 (diversity within sampling sites), b 1 (diversity among sites within the same habitat type), and b 2 (diversity among sites from different habitats). The b 2 component contributed much more to c diversity than did the remaining diversity components, indicating that conservation of the Cerrado ant fauna depends on the maintenance of habitat diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.