The effect of long-term ageing (1000, 2000, and 3000 h) at 475 °C on mechanical properties, microstructure, and substructure of CUSTOM 465® maraging stainless steel was studied. The additional precipitation of nanometric particles of η-Ni3Ti phase in partly recovered lath martensite and decomposition of the BCC solid solution accompanied by the formation of nanometric Cr-rich α’particles were identified. The fraction of reverted austenite in the final microstructure gradually increased with time of ageing at 475 °C. Ageing resulted in a gradual slight decline (up to 10%) in yield strength, ultimate tensile strength, and hardness. On the other hand, for all ageing, dwells ductility and impact energy values remained almost unchanged. The reason for this phenomenon lies in the gradual increase in the fraction of reverted austenite during long-term ageing at 475 °C and at the same time in the sluggish kinetics of microstructural changes in lath martensite. No susceptibility to 475 °C embrittlement was proved.
This paper focuses on the evolution of the microstructure in a grain-oriented electrical steel (GOES) thin strip after casting. After solidification, the microstructure consisted of delta-ferrite. A small fraction of austenite was formed during the cooling of the thin strip in the two-phase region (gamma+delta). Fine Cr2CuS4 particles precipitated in the ferrite and along the delta/gamma interfaces. Laths of primary Widmanstätten austenite (WA) nucleated directly on the high-angle delta-ferrite grain boundaries. The formation of WA laths in both adjacent ferritic grains resulted in a zig-zag shape of delta-ferrite grain boundaries due to their local rotation during austenite nucleation. Based on the EBSD results, a mechanism of the formation of the zig-zag grain boundaries has been proposed. Besides the Widmanstätten morphology, austenite also formed as films along the delta-ferrite grain boundaries. Sulfide precipitation along the delta/gamma interfaces made it possible to prove that austenite decomposition upon a drop in temperature was initiated by the formation of epitaxial ferrite. Further cooling brought the decay of austenite to either pearlite or a mixture of plate martensite and some retained austenite.
The paper deals with results of long-term stress rupture tests on „cross-weld“ specimens made of HR3C–P92 heterogeneous welds. Stress rupture tests were carried out in air at temperatures of 625 and 650 °C up to ca 20 000 h to rupture. Creep rupture strength values of HR3C–P92 welds for 104 h at both 625 and 650 °C were calculated. The preferential location of failure was the intercritical part of the heat affected zone in P92 steel. Local changes of hardness during creep exposure were evaluated by hardness profiles across the welds. Metallographic studies were performed in individual parts of heterogeneous welds. A special attention was paid to precipitation reactions in both base materials and heat affected zones.
This paper deals with the formation of sulphides in as-cast grain-oriented electrical steel (GOES) thin strip during solidification and subsequent cooling through the (δ + γ) field. Chemical composition of the strip was as follows, in mass %: 0.034 C, 2.81 Si, 0.06 Mn, 0.024 S, 0.20 Cr, 0.15 Cu, 0.055 Ni, 0.0011 Ti, 0.0056 N and 0.002 Al. It was found out that chemical composition of coarse sulphides, formed in the area of final solidification, was very different from the composition of fine sulphides precipitated in the two-phase region. Coarse sulphides were rich in iron. Fine complex sulphides were identified as the Cr2CuS4 phase. The effect of fine sulphides on the austenite decomposition at the end of the (δ + γ) field was studied.
In austenitic steels, the tetragonal Z-phase (NbCrN) has frequently been credited with beneficial strengthening effects during dislocation creep. In the modified Z-phase, niobium is partially substituted by vanadium. The basic objective of this contribution is a detailed characterization of the modified Z-phase in vanadium bearing austenitic AISI 316LN+Nb+V and HR3C steels. Experimental activities were focused on crystallography, thermodynamic and dimensional stability, kinetics of precipitation (TTP diagram) and solvus temperature of the modified Z-phase in the steels examined. Thermodynamic modelling was used for prediction of stable minor phases and solvus temperature of the modified Z-phase. Kinetics of precipitation of the (Nb,V)CrN phase in the AISI 316LN+Nb+V steel was experimentally investigated in the temperature interval of 550–1250 °C. The kinetics of precipitation of the modified Z-phase in austenitic matrix was fast. Results of diffraction studies on particles of the modified Z-phase confirmed the existence of the tetragonal unit cell already after short-term annealing. The solvus temperature of the modified Z-phase in austenitic steels was determined to be lower than that for the NbCrN phase. The decrease in the solvus temperature is dependent on the vanadium content in austenitic steels. Both thermodynamic calculations and experimental results proved that the thermodynamical stability of the modified Z-phase in austenite was high. More data are needed for evaluation of long-term dimensional stability of the (Nb,V)CrN phase in austenitic steels at temperatures for their engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.