Distyly is a floral polymorphism that promotes cross-pollination through precise pollination. Psychotria is a mostly tropical genus of distylous Rubiaceae. Although widely studied in Brazil, some regions/species are still poorly explored, which hinders the understanding of distyly system along a greater geographical range. Here, we studied a subtropical population of Psychotria brachyceras in southern Brazil. For this, we characterized morphs occurrence, reciprocity of sexual structures, mating and incompatibility systems. In addition, we compared the reciprocity values from other species of the genus based on values gathered from literature to understand how the population behaves. The population showed equal proportions of thrum (short stigma/high anthers) and pin (high stigma/short anthers) morphs. Reciprocity was higher than the average for the genus and inaccuracy values between sexual organs were evenly distributed between the organ types, indicating a trend to typical distyly. Higher fruit set rates in intermorph and open pollination treatments and pollen tube growth observations confirmed that the population has a functional heteromorphic incompatibility system. Psychotria brachyceras showed no signs of distinct traits to typical distylous populations, which seems to ensure reproductive success and distyly maintenance.
Animal-pollinated plants show a broad variation in floral morphology traits and gametophyte production within populations. Thus, floral traits related to plant reproduction and sexuality are usually exposed to pollinator-mediated selection. Such selective pressures may be even stronger in heterantherous and pollen flowers, in which pollen contributes to both bee feeding and pollination, overcoming the “pollen dilemma” or the inability to perform both functions simultaneously. We describe the phenotypic gender and sexual organ morphology of flowers in two populations of Macairea radula (Melastomataceae), a heterantherous and buzz-pollinated species with pollen flowers. We estimated selection gradients on these traits through female and male fitness components. Both populations showed sizeable phenotypic gender variation, from strict hermaphrodites to increased femaleness or maleness. We found a continuous variation in style and stamen size, and this variation was correlated with corresponding shape values of both sexual organs. We detected bee-mediated selection towards short and long styles through seed number and towards intermediate degrees of heteranthery through pollen removal in one population, and selection towards increased maleness through pollen dispersal in both populations. Our results suggest that bee-mediated selection favors floral sex specialization and stylar dimorphism in M. radula, optimizing reproductive success and solving the pollen dilemma.
Morphological niche partitioning between related syntopic plants that are distylous (with short- and long-styled morphs) is complex. Owing to differences in the heights of stigmas and anthers, each floral morph must place pollen onto two distinct parts of the body of the pollinator. This led us to hypothesize that such partitioning should be more accurate among distylous syntopic species in comparison to combinations with other related plants that do not co-occur. We tested these assumptions using a set of Palicourea (Rubiaceae) species as a model system. We compared the distribution, flowering phenology, floral measurements and reciprocity of sexual organ heights of two syntopic species (Palicourea rigida and Palicourea coriacea) and one non-syntopic congener (Palicourea marcgravii). The three species overlapped in their distributions and flowering periods. The position of sexual organs was, in most cases, partitioned between syntopic populations, with low overlap in anther and stigma heights. However, we found a higher overlap involving the non-syntopic species, especially between Palicourea rigida and Palicourea marcgravii. Additionally, reciprocity of sexual organs was more accurate in intraspecific inter-morph combinations (i.e. legitimate organ correspondence) in comparison to intraspecific intra-morph, interspecific syntopic and interspecific non-syntopic combinations. The partitioning of morphological traits between syntopic species might facilitate the differential placement of pollen on the body of the pollinator and reduce the chances of interspecific interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.