One fundamental feature of consciousness is that the contents of consciousness depend on the state of consciousness. Here, we propose an answer to why this is so: both the state and the contents of consciousness depend on the activity of cortical layer 5 pyramidal (L5p) neurons. These neurons affect both cortical and thalamic processing, hence coupling the cortico-cortical and thalamo-cortical loops with each other. Functionally this coupling corresponds to the coupling between the state and the contents of consciousness. Together the cortico-cortical and thalamo-cortical loops form a thalamo-cortical broadcasting system, where the L5p cells are the central elements. This perspective makes one quite specific prediction: cortical processing that does not include L5p neurons will be unconscious. More generally, the present perspective suggests that L5p neurons have a central role in the mechanisms underlying consciousness.
Constructive theories of brain function such as predictive coding posit that prior knowledge affects our experience of the world quickly and directly. However, it is yet unknown how swiftly prior knowledge impacts the neural processes giving rise to conscious experience. Here we used an experimental paradigm where prior knowledge augmented perception and measured the timing of this effect with magnetoencephalography (MEG). By correlating the perceptual benefits of prior knowledge with the MEG activity, we found that prior knowledge took effect in the time-window 80–95 ms after stimulus onset, thus reflecting an early influence on conscious perception. The sources of this effect were localized to occipital and posterior parietal regions. These results are in line with the predictive coding framework.
Previous studies have observed different onset times for the neural markers of conscious perception. This variability could be attributed to procedural differences between studies. Here we show that the onset times for the markers of conscious visual perception can strongly vary even within a single study. A heterogeneous stimulus set was presented at threshold contrast. Trials with and without conscious perception were contrasted on 100 balanced subsets of the data. Importantly, the 100 subsets with heterogeneous stimuli did not differ in stimulus content, but only with regard to specific trials used. This approach enabled us to study general markers of conscious visual perception independent of stimulus content, characterize their onset and its variability within one study. N200 and P300 were the two reliable markers of conscious visual perception common to all perceived stimuli and absent for all non-perceived stimuli. The estimated mean onset latency for both markers was shortly after 200 ms. However, the onset latency of these markers was associated with considerable variability depending on which subsets of the data were considered. We show that it is first and foremost the amplitude fluctuation in the condition without conscious perception that explains the observed variability in onset latencies of the markers of conscious visual perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.