The combination of strength (ST) and plyometric training (PT) has been shown to be effective for improving sport-specific performance. However, there is no consensus about the most effective way to combine these methods in the same training session to produce greater improvements in neuromuscular performance of soccer players. Thus, the purpose of this study was to compare the effects of different combinations of ST and PT sequences on strength, jump, speed, and agility capacities of elite young soccer players. Twenty-seven soccer players (age: 18.9 ± 0.6 years) participated in an 8-week resistance training program and were divided into 3 groups: complex training (CP) (ST before PT), traditional training (TD) (PT before ST), and contrast training (CT) (ST and PT performed alternately, set by set). The experimental design took place during the competitive period of the season. The ST composed of half-squat exercises performed at 60-80% of 1 repetition maximum (1RM); the PT composed of drop jump exercises executed in a range from 30 to 45 cm. After the experimental period, the maximum dynamic strength (half-squat 1RM) and vertical jump ability (countermovement jump height) increased similarly and significantly in the CP, TD, and CT (48.6, 46.3, and 53% and 13, 14.2, and 14.7%, respectively). Importantly, whereas the TD group presented a significant decrease in sprinting speed in 10 (7%) and 20 m (6%), the other groups did not show this response. Furthermore, no significant alterations were observed in agility performance in any experimental group. In conclusion, in young soccer players, different combinations and sequences of ST and PT sets result in similar performance improvements in muscle strength and jump ability. However, it is suggested that the use of the CP and CT methods is more indicated to maintain/maximize the sprint performance of these athletes.
Session rating of perceived exertion (SRPE) is a practical method to assess internal training load to provide appropriate stimuli. However, coaches and athletes might rate training sessions differently, which can impair performance development. In addition, SRPE might be influenced by athletes' training experience. The authors studied 160 swimmers of different age groups and different competitive swimming experience and 9 coaches. SRPE was indicated by the swimmers 30 min after the end of a training session and before the training session by the coaches. Training-session intensities were classified into easy (SRPE <3), moderate (SRPE 3-5), and difficult (SRPE >5), based on coaches' perception. We observed that the correlation between coaches' and athletes' SRPE increased with increased age and competitive swimming experience, r = .31 for the 11- to 12-y-old group (P < .001), r = .51 for the 13- to 14-y-old group (P < .001), and r = .74 for the 15- to 16-y-old group (P < .001). In addition, younger swimmers (11-12 y, P < .01; 13-14 y, P < .01) rated training intensity differently from coaches in all 3 categories (easy, moderate, and difficult), while the older group rated differently in only 1 category (difficult, P < .01). These findings suggest that the more experienced swimmers are, the more accurate their SRPE is.
Introduction: We investigated differences in metabolic stress (lactate) and muscle activation (electromyography; EMG) when high-load resistance exercise (HL) is compared with a condition in which blood flow restriction (BFR) is applied during the exercise or during the rest interval. Methods: Twelve participants performed HL with BFR during the intervals (BFR-I), during the set (BFR-S), and without BFR. Each condition consisted of 3 sets of 8 repetitions with knee extension at 70% of 1-repetition maximum. Lactate and root mean square (RMS) from the surface EMG of the vastus lateralis were calculated. Results: Lactate increased in all protocols but was higher with BFR-I than with BFR-S and HL. RMS decreased under all conditions, with a larger effect size in BFR-I (1.47) than in BFR-S (0.66) and HL (0.59). Discussion: BFR-I increases lactate, possibly as a result of reduced restoration of ATP. Muscle activation seems to be impacted by mechanical stress but may be reduced by metabolic stress. Muscle Nerve 57: 107-111, 2018The American College of Sports Medicine recommends that participants perform resistance exercise with a load of at least 70% of their 1-repetition maximum (1RM) to stimulate substantial gains in muscle mass and strength.1 However, over the past decade, several studies have found that low-load resistance exercise (e.g., 20%-40% of 1RM) in combination with blood flow restriction (BFR) results in muscle mass gain similar to that obtained with traditional high-load resistance exercise (HL; $70% 1RM). 2-7The benefits of low-load resistance exercise combined with BFR are thought to be driven by acute metabolic stress, whereas HL is driven predominantly by mechanical factors.8 It is conceivable that the combination of high levels of both mechanical and metabolic stress could work together to augment muscle growth. Therefore, it seems reasonable to speculate on the importance of keeping both mechanical and metabolic stress elevated.Given that restricting blood flow increases metabolic stress during low-load resistance training 9,10 and that muscle contraction against high loads restricts blood flow while performing the set, [11][12][13] one possible strategy to increase metabolic stress is to restrict blood flow during rest intervals. However, maintenance of BFR after completion of exercise does not offer benefits to muscle growth, 14 suggesting that metabolites, per se, do not appear to have anabolic properties in the absence of mechanical stress.Taken together, these results suggest that maintenance of BFR only during the rest intervals may offer a novel strategy for potentially augmenting the effects of high-load contractions in resistance exercise by increasing both metabolic stress and muscle activation. Therefore, this study compares metabolic stress (by blood lactate) and muscle activation (by electromyography-root mean square [EMG-RMS] amplitude) during HL under 3 conditions: blood flow restricted during the sets (BFR-S), blood flow restricted during the rest intervals (BFR-I), and witho...
Resisted sprint training consists of performing overloaded sprints, which may produce greater effects than traditional sprint training. We compared a resisted sprint training with overload control versus an unresisted sprint training program on performance in soccer players. Eighteen elite athletes were randomly assigned to resisted (RST) or unresisted sprint training protocol (UR). Before and after a 6-week training period, sprinting ability, change of direction speed (COD), vertical jumps (SJ and CMJ), mean power (MP) and mean propulsive power (MPP) at distinct loads were assessed. Both groups improved sprinting ability at all distances evaluated (5m: UR = 8%, RST = 7%; 10m: UR = 5%, RST = 5%; 15m: UR = 4%, RST = 4%; 20m: UR = 3%, RST = 3%; 25m: UR = 2%, RST = 3%;), COD (UR = 6%; RST = 6%), SJ (UR = 15%; RST = 13%) and CMJ (UR = 15%; RST = 15%). Additionally, both groups increased MP and MPP at all loads evaluated. The between-group magnitude-based inference analysis demonstrated comparable improvement ("trivial" effect) in all variables tested. Finally, our findings support the effectiveness of a short-term training program involving squat jump exercise plus sprinting exercises to improve the performance of soccer players.
We aimed to investigate the role of betaine supplementation on muscle phosphorylcreatine (PCr) content and strength performance in untrained subjects. Additionally, we compared the ergogenic and physiological responses to betaine versus creatine supplementation. Finally, we also tested the possible additive effects of creatine and betaine supplementation. This was a double-blind, randomized, placebo-controlled study. Subjects were assigned to receive betaine (BET; 2 g/day), creatine (CR; 20 g/day), betaine plus creatine (BET+CR; 2+20 g/day, respectively) or placebo (PL). At baseline and after 10 days of supplementation, we assessed muscle strength and power, muscle PCr content, and body composition. The CR and BET+CR groups presented greater increase in muscle PCr content than PL (p=0.004 and p=0.006, respectively). PCr content was comparable between BET versus PL (p=0.78) and CR versus BET+CR (p=0.99). CR and BET+CR presented greater muscle power output than PL in the squat exercise following supplementation (p=0.003 and p=0.041, respectively). Similarly, bench press average power was significantly greater for the CR-supplemented groups. CR and BET+CR groups also showed significant pre- to post-test increase in 1-RM squat and bench press (CR: p=0.027 and p<0.0001; BET+CR: p=0.03 and p<0.0001 for upper- and lower-body assessments, respectively) No significant differences for 1-RM strength and power were observed between BET versus PL and CR versus BET+CR. Body composition did not differ between the groups. In conclusion, we reported that betaine supplementation does not augment muscle PCr content. Furthermore, we showed that betaine supplementation combined or not with creatine supplementation does not affect strength and power performance in untrained subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.