Green roofs have been proposed as a way to mitigate stormwater runoff in urban areas due to the possibility of retrofit to existing buildings. The amount of runoff is influenced by the, humidity, evapotranspiration, as well as soil type and depth. A modelling approach was undertaken to evaluate the response of different soil depths to cumulative rainfall and the efficiency in stormwater flow rate attenuation. The soil hydraulics were modelled using HYDRUS-1D software developed for modelling water flow in variably saturated porous media. Model runs were carried out for three quarterly scenarios to determine runoff peak flow rates and the overall retention, based on evapotranspiration rates of succulent plants and rainfall registers from Auckland, New Zealand. The soil depths modelled ranged from 5 to 160 cm. The results revealed, that the efficiencies in peak flow attenuation by the shallowest soil considered were reduced under extreme and longer rainfall events by 3%. Therefore shallow soil or extensive green roofs may, on a wide scale, overcome the performance of deep soils due to their lighter weight which adds limited loads to existing roof structures thereby making them suited to retrofit greater numbers of buildings.
Abstract:The built environment contributes around half of total greenhouse gas emissions and with 87% of residential buildings that we will have by 2050 already built, it is vital to adopt sustainable retrofitting practices. The question is: what are the viable solutions? One answer may be green roof retrofitting. The environmental benefits include reduced operational carbon emissions, reduced urban heat island effect, increased bio-diversity, housing temperature attenuation and reduced stormwater run-off. The economic benefits are the reduced maintenance costs and lower running costs. The social gain is the creation of spaces where people have access to green areas. However, the barriers to retrofitting include the perceptions of structural adequacy, the risk of water damage, high installation and maintenance costs, as well as access and security issues. Many Australian and Brazilian residential buildings have metal sheet roofs, a lightweight material with poor thermal performance. During the summer, temperatures in Sydney and Rio de Janeiro reach 45 degrees Celsius, and in both cities, rainfall patterns are changing, with more intense downpours. Furthermore, many residential buildings are leased, and currently, tenants are restricted by the modifications that they can perform to reduce running costs and carbon emissions. This research reports on an experiment on two small-scale metal roofs in Sydney and Rio de Janeiro to assess the thermal performance of portable small-scale modules. The findings are that considerable variation in temperature was found in both countries, indicating that green roof retrofitting could lower the cooling energy demand considerably.
OPEN ACCESSSustainability 2015, 7 1082
In the literature, analytical models have been shown to be extremely useful for estimating the decay rates of coliform as fecal indicator microorganisms, providing reliable predictions of bathing conditions in coastal and continental waters. Although a number of different formulations have been developed in the literature, each one may only be suitable for specific environments, and no comparison between these methods has ever been carried out. In the present article, a comparative analysis of bacterial decay models, calculated by eight different formulations, was performed in coastal outfall plumes, considering identical environmental conditions of solar radiation, temperature and salinity. A statistical approach was applied to identify the differences in means and in behaviors of the results obtained in the various simulations. The results indicate good agreement between bacterial decay rates calculated with at least four methods that were considered more reliable, and at least one of the models was shown to be suitable for estimating bacterial decay rates under night-time conditions, considering only the combined influences of temperature and salinity. Moreover, under daytime conditions, it provides consistent decay rates when compared with measurements taken in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.