Speech recognition systems must often decide between competing ways of breaking up the acoustic input into strings of words. Since the possible strings may be acoustically similar, a language model is required; given a word string, the model returns its linguistic probability. This thesis discusses several Markov language models. Subsequently, we present a new kind of language model which • Acknowledgements
Techniques for automatic query expansion from top retrieved documents have shown promise for improving retrieval effectiveness on large collections; however, they often rely on an empirical ground, and there is a shortage of cross-system comparisons. Using ideas from Information Theory, we present a computationally simple and theoretically justified method for assigning scores to candidate expansion terms. Such scores are used to select and weight expansion terms within Rocchio's framework for query reweighting. We compare ranking with information-theoretic query expansion versus ranking with other query expansion techniques, showing that the former achieves better retrieval effectiveness on several performance measures. We also discuss the effect on retrieval effectiveness of the main parameters involved in automatic query expansion, such as data sparseness, query difficulty, number of selected documents, and number of selected terms, pointing out interesting relationships.
Major progress is being recorded regularly on both the technology and exploitation of automatic speech recognition (ASR) and spoken language systems. However, there are still technological barriers to flexible solutions and user satisfaction under some circumstances. This is related to several factors, such as the sensitivity to the environment (background noise), or the weak representation of grammatical and semantic knowledge.Current research is also emphasizing deficiencies in dealing with variation naturally present in speech. For instance, the lack of robustness to foreign accents precludes the use by specific populations. Also, some applications, like directory assistance, particularly stress the core recognition technology due to the very high active vocabulary (application perplexity). There are actually many factors affecting the speech realization: regional, sociolinguistic, or related to the environment or the speaker herself. These create a wide range of variations that may not be modeled correctly (speaker, gender, speaking rate, vocal effort, regional accent, speaking style, non-stationarity, etc.), especially when resources for system training are scarce. This paper outlines current advances related to these topics.
One of the first steps in building a spoken language understanding (SLU) module for dialogue systems is the extraction of flat concepts out of a given word sequence, usually provided by an automatic speech recognition (ASR) system. In this paper, six different modeling approaches are investigated to tackle the task of concept tagging. These methods include classical, well-known generative and discriminative methods like Finite State Transducers (FSTs), Statistical Machine Translation (SMT), Maximum Entropy Markov Models (MEMMs), or Support Vector Machines (SVMs) as well as techniques recently applied to natural language processing such as Conditional Random Fields (CRFs) or Dynamic Bayesian Networks (DBNs). Following a detailed description of the models, experimental and comparative results are presented on three corpora in different languages and with different complexity. The French MEDIA corpus has already been exploited during an evaluation campaign and so a direct comparison with existing benchmarks is possible. Recently collected Italian and Polish corpora are used to test the robustness and portability of the modeling approaches. For all tasks, manual transcriptions as well as ASR inputs are considered. Additionally to single systems, methods for system combination are investigated. The best performing model on all tasks is based on conditional random fields. On the MEDIA evaluation corpus, a concept error rate of 12.6% could be achieved. Here, additionally to attribute names, attribute values have been extracted using a combination of a rule-based and a statistical approach. Applying system combination using weighted ROVER with all six systems, the concept error rate (CER) drops to 12.0%.
This paper focuses on the adaptation of Automatic Speech Recognition systems using Hybrid models combining Artificial Neural Networks (ANN) with Hidden Markov Models (HMM). Most adaptation techniques for ANNs reported in the literature consist in adding a linear transformation network connected to the input of the ANN. This paper describes the application of linear transformations not only to the input features, but also to the outputs of the internal layers. The motivation is that the outputs of an internal layer represent discriminative features of the input pattern suitable for the classification performed at the output of the ANN.-2-In order to reduce the effect due to the lack of adaptation samples for some phonetic units we propose a new solution, called Conservative Training. Supervised adaptation experiments with different corpora and for different types of adaptation are described. The results show that the proposed approach always outperforms the use of transformations in the feature space and yields even better results when combined with linear input transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.