Objective: To compare at-home systems with reduced daily time of use (10% hydrogen peroxide [HP] gel with prefilled (PT) or customized trays (CT), and 10% carbamide peroxide [CP] gel), with the conventional nightguard vital bleaching (10% CP).Bleaching efficacy, adverse effects, and patient's satisfaction were evaluated. Methods: Sixty participants were randomly divided into treatments (14 days): Opalescence GO (OGO)-10%HP PT-30 min, White Class-10%HP CT-30 min, Opalescence PF-10%CP CT-2 h, and Opalescence PF-10%CP CT-8 h. Color difference (visual and spectrophotometer), tooth sensitivity (visual analogue scale), gingival condition (Löe index), enamel mineralization (laser fluorescence), and patients' satisfaction (questionnaire) were assessed. Statistical tests were applied (5%).Results: After 1 year, color difference was similar for the groups (p > 0.05). All groups showed similar sensitivity risk (p > 0.05). The intensity of sensitivity and gingival irritation was mild for all gels, but higher for OGO. Fluorescence after bleaching remained similar to those of sound enamel. All participants were satisfied with treatments.Conclusions: All systems produced similar bleaching efficacy, which was maintained after 1 year. Patients were satisfied with bleaching outcomes. Tooth sensitivity occurred in all groups, but with overall mild intensity. No relevant gingival irritation and enamel demineralization was observed.Clinical significance: Bleaching with 10% HP gels in prefilled and CTs represent efficacious alternative for tooth color change, with patients' acceptance similar to conventional 10% CP. Patients must be warned about the mild sensitivity and gingival irritation potential, mainly with PTs.
The present study aimed to assess the influence of curing distance on the loss of irradiance and power density of four curing light devices. The behavior in terms of power density of four different dental curing devices was analyzed (Valo, Elipar 2, Radii-Cal, and Optilux-401) using three different distances of photopolymerization (0 mm, 4 mm, and 8 mm). All devices had their power density measured using a MARC simulator. Ten measurements were made per device at each distance. The total amount of energy delivered and the required curing time to achieve 16 J/cm(2) of energy was also calculated. Data were statistically analyzed with one-way analysis of variance and Tukey's tests (p < 0.05). The curing distance significantly interfered with the loss of power density for all curing light devices, with the farthest distance generating the lowest power density and consequently the longer time to achieve an energy density of 16 J/cm(2) (p < 0.01). Comparison of devices showed that Valo, in extra power mode, showed the best results at all distances, followed by Valo in high power mode, Valo in standard mode, Elipar 2, Radii-Cal, and Optilux-401 halogen lamp (p < 0.01). These findings indicate that all curing lights induced a significant loss of irradiance and total energy when the light was emitted farther from the probe. The Valo device in extra power mode showed the highest power density and the shortest time to achieve an energy density of 16 J/cm(2) at all curing distances.
Intraosseous schwannoma is a rare unilocular radiolucency that when located periapically could be misdiagnosed as an endodontic lesion and result in unnecessary root canal treatment. The vitality of the pulp is an important test to exclude lesions of inflammatory origin. Histological examination is important to establish the diagnosis of lesions in the periradicular region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.