The aim of this study was to evaluate the relationship among oxidative DNA damage, density of Helicobacter pylori and the relevance of cagA, vacA and iceA genotypes of H. pylori. Gastric epithelial cells were isolated from 24 uninfected patients, 42 H. pylori infected patients with gastritis, and 61 patients with gastric cancer. Oxidative DNA damage was analyzed by the Comet assay, the density of H. pylori was measured by real-time polymerase chain reaction (PCR), and allelic variants of cagA, vacA and iceA were identified using the PCR. Infected patients by Helicobacter pylori cagA(+), vacAs1 m1 and iceA1 genotype showed higher levels of oxidative DNA damage than infected patients with H. pylori cagA(-), vacAs2 m2 and iceA2 genotypes and uninfected patients. Density of H. pylori did not influence oxidative DNA damage. Our results indicate that H. pylori genotype is more relevant than density for oxidative DNA damage.
The contribution of diet to cancer ranges from 10 to 80%. The low ingestion of antioxidants and enzymatic cofactors involved in DNA repair and methylation reactions and the high ingestion of chemical additives present in the modern diet, associated with genetic factors, could lead to genomic instability and the hypomethylation of proto-oncogenes, thus contributing to development of genetic-related diseases such as cancer. The present study evaluated the influence of diet on the level of oxidative DNA damage, misincorporated uracil and DNA repair capability in peripheral blood lymphocytes from two groups of individuals with antagonist diets as follows: (i) 49 healthy individuals with a diet rich in organic products, whole grains, fruit and vegetables and poor in processed foods (Group I) and (ii) 56 healthy individuals with diet rich in processed foods and poor in fruit and vegetables (Group II). Oxidative DNA damage, uracil incorporation and DNA repair capability were assessed by the comet assay. The individuals in Group I presented lower levels of oxidative DNA damage (oxidized purines and pyrimidines) and lower levels of DNA damage induced by ex vivo treatment with hydrogen peroxide (H(2)O(2)) than those individuals in Group II. The analysis of our results suggests that a diet rich in organic products, integral grains, fruit and vegetables and poor in industrialized products can protect against oxidative DNA damage and DNA damage induced by H(2)O(2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.