We provide a new set of complementary geodetic data for the 2005 rifting event of Afar (Ethiopia). Interferometric synthetic aperture radar and subpixel correlations of synthetic aperture radar and SPOT images allow us to deduce 3‐D surface displacement unambiguously. We determine the geometry of the dike and neighboring magma chambers and invert for the distribution of opening of the dike, as well as slip on rift border faults. The volume of the 2005 dike (1.5–2.0 km3) is not balanced by sufficient volume loss at Dabbahu and Gabho volcanoes (0.42 and 0.12 km3, respectively). Taking into account the deflation of a suspected deep midsegment magma chamber simultaneously to dike intrusion produces a smoother opening distribution along the southern segment. Above the dike, faults slipped by an average 3 m, yielding an estimated geodetic moment of 3.5 × 1019 Nm, one order of magnitude larger than the cumulative seismic moment released during the earthquake swarm. Between Dabbahu and Ado'Ale volcanic complexes, significant opening occurred on the western side of the dike. The anomalous location of the dike at this latitude, offset to the east of the axial depression, may explain this phenomenon. A two‐stage intrusion scenario is proposed, whereby rifting in the northern Manda Hararo Rift was triggered by magma upwelling in the Dabbahu area, at the northern extremity of the magmatic segment. Although vigorous dike injection occurred during the September 2005 event, the tectonic stress deficit since the previous rifting episode was not fully released, leading to further intrusions in 2006–2009.
Système pour l'Observation de la Terre images are used to map ground displacements induced by earthquakes. Deformations ͑offsets͒ induced by stereoscopic effect and roll, pitch, and yaw of satellite and detector artifacts are estimated and compensated. Images are then resampled in a cartographic projection with a low-bias interpolator. A subpixel correlator in the Fourier domain provides twodimensional offset maps with independent measurements approximately every 160 m. Biases on offsets are compensated from calibration. High-frequency noise ͑0.125 m Ϫ1 ͒ is ϳ0.01 pixels. Low-frequency noise ͑lower than 0.001 m Ϫ1 ͒ exceeds 0.2 pixels and is partially compensated from modeling. Applied to the Landers earthquake, measurements show the fault with an accuracy of a few tens of meters and yields displacement on the fault with an accuracy of better than 20 cm. Comparison with a model derived from geodetic data shows that offsets bring new insights into the faulting process.
We present an active optical synthetic aperture-imaging system. A phase-step digital holographic setup is used as a wavefront sensor in the far field. The overlap of the holograms enables the estimation and compensation of their relative positions and phase with a speckle cross-correlation algorithm. Experimental results on a short-range synthetic aperture setup at 633 nm are presented that are based on 128 x 128 holograms. The synthesis is executed in one direction by means of rotation of the object. Test images show a significant gain of resolution in the synthesis direction. Processing errors are estimated through experiment. Random processing errors of a synthetic pupil composed of 33 merged holograms are negligible, but biases induced by unknown optical aberrations ofthe reference wave induce defocusing and astigmatism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.