Sensory information is critical to correct performance errors online during the execution of complex tasks and can be complemented by augmented feedback (FB). Here, 2 groups of participants acquired a new bimanual coordination pattern under different augmented FB conditions: 1) visual input reflecting coordination between the 2 hands and 2) auditory pacing integrating the timing of both hands into a single temporal structure. Behavioral findings revealed that the visual group became dependent on this augmented FB for performance, whereas the auditory group performed equally well with or without augmented FB by the end of practice. Functional magnetic resonance imaging (fMRI) results corroborated these behavioral findings: the visual group showed neural activity increases in sensory-specific areas during practice, supporting increased reliance on augmented FB. Conversely, the auditory group showed a neural activity decrease, specifically in areas associated with cognitive/sensory monitoring of motor task performance, supporting the development of a control mode that was less reliant on augmented FB sources. Finally, some remnants of brain activity in sensory-specific areas in the absence of augmented FB were found for the visual group only, illustrating ongoing reliance on these areas. These findings provide the first neural account for the "guidance hypothesis of information FB," extensively supported by behavioral research.
In this article, we propose a new method for providing assistance during cyclical movements. This method is trajectory-free, in the sense that it provides user assistance irrespective of the performed movement, and requires no other sensing than the assisting robot's own encoders. The approach is based on adaptive oscillators, i.e., mathematical tools that are capable of learning the high level features (frequency, envelope, etc.) of a periodic input signal. Here we present two experiments that we recently conducted to validate our approach: a simple sinusoidal movement of the elbow, that we designed as a proof-of-concept, and a walking experiment. In both cases, we collected evidence illustrating that our approach indeed assisted healthy subjects during movement execution. Owing to the intrinsic periodicity of daily life movements involving the lower-limbs, we postulate that our approach holds promise for the design of innovative rehabilitation and assistance protocols for the lower-limb, requiring little to no user-specific calibration.
We propose a novel method for movement assistance that is based on adaptive oscillators, i.e., mathematical tools that are capable of extracting the high-level features (amplitude, frequency, and offset) of a periodic signal. Such an oscillator acts like a filter on these features, but keeps its output in phase with respect to the input signal. Using a simple inverse model, we predicted the torque produced by human participants during rhythmic flexion-extension of the elbow. Feeding back a fraction of this estimated torque to the participant through an elbow exoskeleton, we were able to prove the assistance efficiency through a marked decrease of the biceps and triceps electromyography. Importantly, since the oscillator adapted to the movement imposed by the user, the method flexibly allowed us to change the movement pattern and was still efficient during the nonstationary epochs. This method holds promise for the development of new robot-assisted rehabilitation protocols because it does not require prespecifying a reference trajectory and does not require complex signal sensing or single-user calibration: the only signal that is measured is the position of the augmented joint. In this paper, we further demonstrate that this assistance was very intuitive for the participants who adapted almost instantaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.