The goal in this study was to synthesize a lanthanum -nickel phase (Ruddlesden-Popper phases) La 4 Ni 3 O 10 . This material was prepared using a polymeric route. An easy synthesis method is presented in order to obtain an economical cathode material, which can be used in Solid Oxide Fuel Cells (SOFC). The polymeric precursors were prepared following the Castillo method. The originality of this work was to optimize the ratio HMTA/ metallic salts from 1 to 6. The obtained powders were characterized by thermal analysis; Differential Scanning Calorimetry (DSC Q10 Instrument TA), Thermogravimetric Analysis (TGA -Q50 Instrument TA-) and Xray diffractometer (Bruker, D8 Advance diffractometer), in order to determine the crystallized phase. Experiments 5 and 6 did not present coagulation but after few days, solution 5 was transformed into a gel. Gels 2 to 5 were heated in order to obtain a solid material. These powders are characterized by thermogravimetric and thermo-differential methods. The powders obtained at 800, 900 and 1000°C were analyzed by X-ray diffraction and it was found that the temperature to get to the La 4 Ni 3 O 10 phase was 1000ºC.
The goal in this study is to synthesize a Ruddleden-Poper La-Ni phase (La4Ni3O10) using a polymeric route. This material exhibits mixed ionic and electronic conduction (MIEC) properties and can be used as cathode material in the manufacture of Solid Oxide Fuel Cells (SOFC). In addition, an easy and inexpensive synthesis method is presented The polymeric precursors are prepared following the Castillo method using optimized the complexation ratios (HMTA/metallic salts) from 1 to 6. The obtained powders are characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) in order to determine the processing conditions for formation of the crystalline phase. Experiments performed using complexation ratios of 5 and 6 do not show coagulation. However, the solution prepared using a complexation ratio of 5, is transformed into a gel after few days. Gels produced from solutions prepared with complexation ratios from 2 to 5 were heated at 800, 900 and 1000°C to obtain solid materials. These powders are characterized by TGS, DSC and XRD and it is found that the temperature needed to obtain crystalline La4Ni3O10 was 1000°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.