The rapidly increasing production of engineered nanoparticles has created a demand for particle removal from industrial and communal wastewater streams. Efficient removal is particularly important in view of increasing long-term persistence and evidence for considerable ecotoxicity of specific nanoparticles. The present work investigates the use of a model wastewater treatment plant for removal of oxide nanoparticles. While a majority of the nanoparticles could be captured through adhesion to clearing sludge, a significant fraction of the engineered nanoparticles escaped the wastewater plant's clearing system, and up to 6 wt % of the model compound cerium oxide was found in the exit stream of the model plant. Our study demonstrates a significant influence of surface charge and the addition of dispersion stabilizing surfactants as routinely used in the preparation of nanoparticle derived products. A detailed investigation on the agglomeration of oxide nanoparticles in wastewater streams revealed a high stabilization of the particles against clearance (adsorption on the bacteria from the sludge). This unexpected finding suggests a need to investigate nanoparticle clearance in more detail and demonstrates the complex interactions between dissolved species and the nanoparticles within the continuously changing environment of the clearing sludge.
A gram-positive, strictly anaerobic, motile, endospore-forming rod, tentatively identified as a proteolytic Clostridium sp., was isolated from the effluent of an anaerobic suspended-growth bioreactor. The organism was able to biotransform 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane. 1,1,1-Trichloroethane was completely transformed (.99.5%) by reductive dehalogenation to 1,1-dichloroethane (30 to 40%) and, presumably by other mechanisms, to acetic acid (7%) and unidentified products. The reductive dehalogenation of tetrachloromethane led to the intermediate trichloromethane, which was further transformed to dichloromethane (8%) and unidentified products. The biotransformation occurred during the exponential growth phase, as well as during the stationary phase. Tetrachlorethene, trichloroethene, 1,1-dichloroethene, chloroethane, 1,1-dichloroethane, and dichloromethane were not biotransformed significantly by the organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.