A simple chromatographic procedure has been devised to separate y-glutamyl phosphate reductase and 1 -pyrroline-5-carboxylate reductase, allowing the measurement of the former in crude Escherichia coli extracts. Analysis of a number of strains of E. coli has demonstrated that gene proA codes for y-glutamyl phosphate reductase and proB for y-glutamyl kinase. Introduction of a ColE1 hybrid plasmid containing the proA,B region into a strain with a chromosomal deletion of proA,B led to 3-and 17-fold increases in the specific activities of y-glutamyl kinase and y-glutamyl phosphate reductase, respectively.
In Pseudomonas aeruginosa the synthesis of only two out of eight arginine biosynthetic enzymes tested was regulated. Comparisons were made between the specific activities of these enzymes in bacteria grown on arginine or on its precursor, glutamate. N2-Acetylornithine 5-aminotransferase (ACOAT), an enzyme involved in both the biosynthesis and catabolism of arginine, was induced about 14-fold during growth of the organism on arginine as the only carbon and nitrogen source, and the anabolic ornithine carbamoyltransferase (aOTC), a strictly biosynthetic enzyme, was repressed 18-fold. Addition of various carbon sources to the arginine medium led to repression of ACOAT and to derepression of aOTC. Fructose, which supported only slow growth of P. arruginosa, had a weak regulatory effect on the synthesis of the two arginine enzymes while citrate, a good carbon source for this organism, had a strong effect. The repression of ACOAT by citrate was not relieved by adding cyclic AMP to the medium. Under a variety of growth conditions leading to different enzyme activities, a linear relationship between the reciprocal of the specific activity of ACOAT and the specific activity of aOTC was observed. This inverse regulation of the formation of the two enzymes suggested that a single regulatory system governs their synthesis. Such a view was supported by the isolation of citrate-resistant regulatory mutants which constitutively formed ACOAT at the induced level and aOTC at the repressed level.
In Pseudomonas aeruginosa PAO the anabolic ornithine carbamoyltransferase (OTCase, EC 2.1.3.3) is the product of the argF gene and the only arginine biosynthetic enzyme whose synthesis is repressible by arginine. We have determined the complete nucleotide sequence of the argF gene including its promoter-control region. The deduced amino acid sequence of the anabolic OTCase consists of 305 residues (Mr 33,924), and this was confirmed by the N-terminal amino acid sequence, the total amino acid composition, and the subunit Mr of the purified enzyme. The native anabolic OTCase (Mr 110,000 to 125,000) was found to be a trimer by cross-linking experiments. P. aeruginosa also has a catabolic OTCase (the arcB gene product), which catalyzes the reverse reaction of the anabolic conversion. At the nucleotide sequence level, the P. aeruginosa argF gene had 52.4% identity with the arcB gene. The Escherichia coli argF and argI genes, which code for anabolic OTCase isoenzymes, had 47.3 and 44.9% identity, respectively, with the P. aeruginosa argF sequence. This suggests that these four genes have evolved from a common ancestral gene. The arcB gene appears to be more closely related to the E. coli argF gene than to the P. aeruginosa argF gene. Two transcripts (mRNA-1, mRNA-2) of the P. aeruginosa argF gene were identified by S1 mapping. The transcription initiation site for mRNA-1 was preceded by sequences having partial homology with the E. coli -35 and -10 consensus promoter sequences. No sequence similar to consensus promoters of enteric bacteria was found upstream of the 5' end of mRNA-2. E. coli carrying a P. aeruginosa argF+ recombinant plasmid produced mRNA-1 with low efficiency but no (or very little) mRNA-2. Arginine repressed argF transcription in P. aeruginosa. In the argF promoter region no sequence homologous to the "arg box" (arginine operator module) of E. coli was found. The mechanism of arginine repression in P. aeruginosa thus appears to be different from that in E. coli.Pseudomonas aeruginosa PAO has two ornithine carbamoyltransferases (OTCases; EC 2.1.3.3). The anabolic OTCase, which is the product of the argF gene [designated argF (P) quarternary structure of the purified anabolic OTCase from the same organism. This allowed us to make comparisons with the known sequences and structures of other OTCases, notably the catabolic arcB enzyme from P. aeruginosa (2) and the two anabolic argF [designated argF(E) herein] and argI isoenzymes from Escherichia coli K-12 (3, 48). We found that all of these enzymes had substantial sequence similarities.In P. aeruginosa, the anabolic OTCase is the only arginine biosynthetic enzyme whose synthesis is repressed by exogenous arginine (25,49); the arginine biosynthetic pathway is controlled essentially by feedback inhibition of the first two enzymes (17,18). Little is known about the mechanism of argF(P) repression because no regulatory mutants are available. By contrast, regulation of arginine biosynthesis has been studied extensively in E. coli K-12, in which the argR rep...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.