At present, Brazil imports approximately 11 billion liters/year of diesel. With the interruption of the works in the new Petrobras refineries, the projection is that by 2025 this volume will increase to 24.2 billion liters of diesel/year. In this sense, the biodiesel factory Grand Valle Bio Energy Ltda., located in the state of Rio de Janeiro, in conjunction with the FAPERJ makes some investments in technology development for the cultivation and use of microalgae as an alternative raw material in the production of biodiesel. Based on arguments previously said, this work presents the results of the microalgae cultivation Monoraphidium sp. in photobioreactors the pilot plant of the company. The installation with an area of 120 m 2 is included with 2 open photobioreactors of type falling film (20 m × 1 m), with a cascade of 18mm and capacity of 4000 L. The lineage cultivated is selected from previous ecophysiological studies that are identified as promising for biodiesel production by having a high potential for the production of lipids. This lineage is maintained at collection of the stock of cultures Laboratory of Green Technologies of the School of Chemistry/ UFRJ. The cultivation was performed in means ASM-1 (Gorham et al., 1964), initial pH 8.0, with aeration and circulation average of 8 hours a day during 19 days. The culture was started with an inoculum of 1 × 10 7 cel/ml. The lipid production was determined in two phases of growth: on day 4 (exponential phase) and 15 day (stationary phase). For the determination and quantification of lipid content, two different methods were assessed for a sample of biomass, submitted to the same processes the separation and drying. The results showed the methodology of Bligh & Dyer with modifications as the most efficient in extracting lipids. The total lipid content of the biomass Monoraphidium sp. was 30.58%. The growth rate varied between 0.74 ± 0.01 and 0.68 ± 0.02.
As reported in the study, the high-oil/ha-year productivity of microalgae has raised a lot of interest in their use as a source of raw materials for biofuels. However, the high costs of production and maintenance of closed culture systems (photobioreactor type) and the problems of contamination that lead to lower productivity of open systems (of the "open-pond" type) have become important limitations in evaluating the sustainability of producing biofuels from microalgae.In the view of the favorable prospects of employing microalgae as an economically viable source of raw materials for the production of biofuels, this chapter outlines the different ways microalgae are cultivated, the required nutritional conditions and the main procedures used for increasing their scale. Additionally, those more commonly used on a large scale are described and their advantages and disadvantages are pointed out. This analysis results in a proposal of a new type of photobioreactor, of the cylindrical container type, constructed of polyethylene, a nontransparent material that is cheaper and more durable than the ones that are commonly used (polycarbonate, glass or polymethyl methacrylate (PMMA)). Internal illumination of the photobioreactor is provided by a beam from plastic optical fibers that receive sunlight focused at the extremity of the beam.
This work studies the saponification which directs the wet biomass of algae Chlamydomonas sp. like a previous stage to production of biodiesel. This stage allows the obtainment of fatty acids to produce biodiesel, instead of the gross lipid fraction. In addition of the fatty acids, utilizing the same process one can also obtain the fraction unsaponifiable, these are soluble in apolar solvents and contain mainly carotenoids that can take action as antioxidants and photoprotectors, as they reduce the oxidation of unsaturated fatty acids. The saponification direct and extraction of fatty acids from biomass is faster and reduces the time and cost of operation. The separation of unsaponifiable matter from the biomass humid of microalgae Chlamydomonas sp., was held according to the method AOCS (Ca 6a-40), using extraction Liquid-liquid with hexane as solvent. Subsequently, phase hydroalcoholic or from soap, containing fatty acids, was acidified by addition of H2SO4 and the fatty acids were recovered by the addition of hexane. After acidulation of the soap, necessary for obtaining of the fatty acids was performed the stage of esterification for obtaining of biodiesel. The operating conditions were: molar ratio fatty acid:methanol (1:10), as catalyst 8% H2SO4 calculated in relation to the mass of fatty acid, 200˚C and reaction time of 90 minutes. The content of methyl esters was 96.8% determined by gas chromatography according to standard EN14103. The quality of biodiesel produced from wet biomass of Chlamydomonas sp. is according to the specification established by standard EN 14214 and RANP No. 14. For the identification of the composition the unsaponifiable fraction was used the method of High Performance Liquid G. C. Díaz et al. 1211 Chromatography (HPLC). The composition of the material unsaponifiable found was of: Carotenoids total (0.76%); Lutein (0.45%); Zeaxanthin (0.07%); α-carotene (0.05%); β-carotene (0.11%); 13 cisβ-carotene (0.05%) and 9-cisβ-carotene (0.03%).
Evaluation of lipid yield for biodiesel production extracted from microalgae Scenedesmus sp. submitted to different homogenization times and physicochemical changes Avaliação do rendimento lipídico para produção de biodiesel extraído de microalgas Scenedesmus sp. submetidos a diferentes tempos de homogeneização e alterações físico-químicas
Renewable hydrocarbons refer to fuels consisting of hydrocarbons of 10 to 20 carbon atoms, produced from biomass, and free of oxygen. Hydrocracking, hydrodeoxygenation and hydrotreatment processes for the production of renewable hydrocarbons are described in the literature. Microalgae have been targeted in recent years to synthesize biomass that can be used in the production of biofuels, such as renewable hydrocarbons, biodiesel or ethanol second generation. In this context the lineage Monoraphidium sp. was selected from previous ecophysiological studies and its potential to produce lipids to develop this research related with the extraction of the bio-oil of the wet biomass of Monoraphidium sp. through heat treatment. Consecutively the bio-oil was used as raw material for the production of hydrocarbons through hydrocracking and hydrodeoxygenation processes (HDO) as: decarbonylation, decarboxylation, dehydratation, with in situ production of hydrogen from liquid-phase reforming of glycerol. The reactions were carried out under two different temperature conditions, 350˚C and 300˚C, respectively, for 1 h and using ruthenium alumina catalyst (Ru/Al 2 O 3). The results showed the bio-oil processing route at a temperature of 350˚C promising for the production of hydrocarbons achieving a conversion of 81.54%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.