At present, Brazil imports approximately 11 billion liters/year of diesel. With the interruption of the works in the new Petrobras refineries, the projection is that by 2025 this volume will increase to 24.2 billion liters of diesel/year. In this sense, the biodiesel factory Grand Valle Bio Energy Ltda., located in the state of Rio de Janeiro, in conjunction with the FAPERJ makes some investments in technology development for the cultivation and use of microalgae as an alternative raw material in the production of biodiesel. Based on arguments previously said, this work presents the results of the microalgae cultivation Monoraphidium sp. in photobioreactors the pilot plant of the company. The installation with an area of 120 m 2 is included with 2 open photobioreactors of type falling film (20 m × 1 m), with a cascade of 18mm and capacity of 4000 L. The lineage cultivated is selected from previous ecophysiological studies that are identified as promising for biodiesel production by having a high potential for the production of lipids. This lineage is maintained at collection of the stock of cultures Laboratory of Green Technologies of the School of Chemistry/ UFRJ. The cultivation was performed in means ASM-1 (Gorham et al., 1964), initial pH 8.0, with aeration and circulation average of 8 hours a day during 19 days. The culture was started with an inoculum of 1 × 10 7 cel/ml. The lipid production was determined in two phases of growth: on day 4 (exponential phase) and 15 day (stationary phase). For the determination and quantification of lipid content, two different methods were assessed for a sample of biomass, submitted to the same processes the separation and drying. The results showed the methodology of Bligh & Dyer with modifications as the most efficient in extracting lipids. The total lipid content of the biomass Monoraphidium sp. was 30.58%. The growth rate varied between 0.74 ± 0.01 and 0.68 ± 0.02.
As reported in the study, the high-oil/ha-year productivity of microalgae has raised a lot of interest in their use as a source of raw materials for biofuels. However, the high costs of production and maintenance of closed culture systems (photobioreactor type) and the problems of contamination that lead to lower productivity of open systems (of the "open-pond" type) have become important limitations in evaluating the sustainability of producing biofuels from microalgae.In the view of the favorable prospects of employing microalgae as an economically viable source of raw materials for the production of biofuels, this chapter outlines the different ways microalgae are cultivated, the required nutritional conditions and the main procedures used for increasing their scale. Additionally, those more commonly used on a large scale are described and their advantages and disadvantages are pointed out. This analysis results in a proposal of a new type of photobioreactor, of the cylindrical container type, constructed of polyethylene, a nontransparent material that is cheaper and more durable than the ones that are commonly used (polycarbonate, glass or polymethyl methacrylate (PMMA)). Internal illumination of the photobioreactor is provided by a beam from plastic optical fibers that receive sunlight focused at the extremity of the beam.
It is of great knowledge nowadays that the use of fossil fuels is responsible for the emission of gases that intensify the greenhouse effect, which threatens the survival of the humankind. The gravity of this fact could be mitigated through the indirect use of solar energy for fuels derived from vegetable that can be planted and cultivated by the world of renewable and non-polisher. Microalgae play an important role in this regard, as they have promising characteristics as potential raw material for the production of biofuels, able to absorb large amounts of CO2. Chlorophyll organisms convert these simple substances in the atmosphere, absorbing sunlight into chemical energy stored, that is, compounds with high energy, biomass can also be used to obtain biocompounds human nutritional supplement and food animal, however, have been found an important number of difficulties to economically viable production like high cost of production of dry biomass and oil extraction. Here, we review the main approaches of biorefinery concept appearing as an alternative to achieve economic viability of the production of bio-diesel based on microalgae. The major points are the following: 1) use of re-residual water, 2) marketing of Carbon Credits, and 3) development of co-products resulting from high value added.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.