International audienceThis work reports the performance evaluation of low-cost hot embossing processes of fine three-dimensional microstructures, namely (i) cylindrical microlens array, (ii) plano-convex aspheric Fresnel lens, and (iii) pyramidal array structures. All those optical elements were replicated by employing a low-cost hot embossing tool in optical quality acrylic material. Scanning electron microscopy and optical interference microscopy techniques were used to quantitatively measure the obtained structures. In terms of the replication fidelity with respect to the mold counterpart, the resulting optical elements presented at least 96 % of dimensional fidelity at micro- and nanometer scale, including the structures with sharp edges present in the Fresnel lens. In terms of the surface optical quality, resulting root mean square surface roughness of at least one tenth of wavelength was obtained, considering applications in the visible range of spectrum. The results showed that even nanostructures generated by the material removal mechanisms during mold fabrication, such as crystal grain elastic recovery, were well replicated with differences in the range of few of nanometers which is within the vertical resolution of the employed optical interference technique
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.