Hundreds of species in one of Australia's dominant plant families, the Myrtaceae, are at risk from the invasive pathogenic fungus Austropuccinia psidii. Since its arrival in Australia in 2010, native plant communities have been severely affected, with highly susceptible species likely to become extinct from recurring infections. While severe impact on Australian native and plantation forestry has been predicted, the lemon myrtle industry is already under threat. Commercial cultivars of lemon myrtle (Backhousia citriodora) are highly susceptible to A. psidii. Detecting and monitoring disease outbreaks is currently only possible by eye, which is costly and subject to human bias. This study aims at developing a proof‐of‐concept for automated, non‐biased classification of healthy (naïve), fungicide‐treated and diseased lemon myrtle trees by means of their spectral reflectance signatures. From a lemon myrtle plantation, spectral signatures of fungicide‐treated and untreated leaves were collected using a portable field spectrometer. A third class of spectra, from naïve lemon myrtle leaves that had not been exposed to A. psidii, was collected from a botanical garden. Reflectance spectra in their primary form and their first‐order derivatives were used to train a random forest classifier resulting in an overall accuracy of 78% (kappa = 0.68) for primary spectra and 95% (kappa = 0.92) for first‐order derivative‐transformed spectra. Thus, an optical sensor‐based discrimination, using spectral reflectance signatures of this as yet uninvestigated pathosystem, seems technically feasible. This study provides a foundation for the development of automated, sensor‐based detection and monitoring systems for myrtle rust.
Disease management in agriculture often assumes that pathogens are spread homogeneously across crops. In practice, pathogens can manifest in patches. Currently, disease detection is predominantly carried out by human assessors, which can be slow and expensive. A remote sensing approach holds promise. Current satellite sensors are not suitable to spatially resolve individual plants or lack temporal resolution to monitor pathogenesis. Here, we used multispectral imaging and unmanned aerial systems (UAS) to explore whether myrtle rust (Austropuccinia psidii) could be detected on a lemon myrtle (Backhousia citriodora) plantation. Multispectral aerial imagery was collected from fungicide treated and untreated tree canopies, the fungicide being used to control myrtle rust. Spectral vegetation indices and single spectral bands were used to train a random forest classifier. Treated and untreated trees could be classified with high accuracy (95%). Important predictors for the classifier were the near-infrared (NIR) and red edge (RE) spectral band. Taking some limitations into account, that are discussedherein, our work suggests potential for mapping myrtle rust-related symptoms from aerial multispectral images. Similar studies could focus on pinpointing disease hotspots to adjust management strategies and to feed epidemiological models.
Epidermal structures (ES) of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm-2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA) based on the spectral data. Subsequently, variable importance (VIP) was calculated to identify spectral regions relevant for discriminating our functional types (classes). Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.