Table of contentsA1 Functional advantages of cell-type heterogeneity in neural circuitsTatyana O. SharpeeA2 Mesoscopic modeling of propagating waves in visual cortexAlain DestexheA3 Dynamics and biomarkers of mental disordersMitsuo KawatoF1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneuronsVladislav Sekulić, Frances K. SkinnerF2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brainsDaniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán SomogyváriF3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir JosićO1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generatorsIrene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo VaronaO2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrainEunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun ChoiO3 Modeling auditory stream segregation, build-up and bistabilityJames Rankin, Pamela Osborn Popp, John RinzelO4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fieldsAlejandro Tabas, André Rupp, Emili Balaguer-BallesterO5 A simple model of retinal response to multi-electrode stimulationMatias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish MeffinO6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination taskVeronika Koren, Timm Lochmann, Valentin Dragoi, Klaus ObermayerO7 Input-location dependent gain modulation in cerebellar nucleus neuronsMaria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker SteuberO8 Analytic solution of cable energy function for cortical axons and dendritesHuiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo YuO9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal networkJimin Kim, Will Leahy, Eli ShlizermanO10 Is the model any good? Objective criteria for computational neuroscience model selectionJustas Birgiolas, Richard C. Gerkin, Sharon M. CrookO11 Cooperation and competition of gamma oscillation mechanismsAtthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan GielenO12 A discrete structure of the brain wavesYuri Dabaghian, Justin DeVito, Luca PerottiO13 Direction-specific silencing of the Drosophila gaze stabilization systemAnmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby MaimonO14 What does the fruit fly think about values? A model of olfactory associative learningChang Zhao, Yves Widmer, Simon Sprecher,Walter SennO15 Effects of ionic diffusion on power spectra of local field potentials (LFP)Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen...
Any motion during an image acquisition leads to an artefact in the final image. Structured illumination microscopy (SIM) combines several raw images into one high-resolution image and is thus particularly prone to these motion artefacts. Their unpredictable shape cannot easily be distinguished from real high-resolution content. We previously implemented a motion detection specifically for SIM, which had two shortcomings which are solved here. First, the brightness dependency of the motion signal is removed. Second, the empirical threshold of the calculated motion signal was not a threshold at a maximum allowed artefact. Here we investigate which artefacts are still acceptable and which linear movement creates them. Thus, the motion signal is linked with the maximal strength of the expected artefact. A signal-to-noise analysis including classification successfully distinguishes between artefact-free imaging, shearing and distortion artefacts in biological specimens. A shearing, as in wide-field microscopy, is the dominant reconstruction artefact, while distortions arise not until surprisingly fast movements.
Current models for automated emotion recognition are developed under the assumption that emotion expressions are distinct expression patterns for basic emotions. Thereby, these approaches fail to account for the emotional processes underlying emotion expressions. We review the literature on human emotion processing and suggest an alternative approach to affective computing. We postulate that the generalizability and robustness of these models can be greatly increased by three major steps: (1) modeling emotional processes as a necessary foundation of emotion recognition; (2) basing models of emotional processes on our knowledge about the human brain; (3) conceptualizing emotions based on appraisal processes and thus regarding emotion expressions as expressive behavior linked to these appraisals rather than fixed neuro-motor patterns. Since modeling emotional processes after neurobiological processes can be considered a long-term effort, we suggest that researchers should focus on early appraisals, which evaluate intrinsic stimulus properties with little higher cortical involvement. With this goal in mind, we focus on the amygdala and its neural connectivity pattern as a promising structure for early emotional processing. We derive a model for the amygdala-visual cortex circuit from the current state of neuroscientific research. This model is capable of conditioning visual stimuli with body reactions to enable rapid emotional processing of stimuli consistent with early stages of psychological appraisal theories. Additionally, amygdala activity can feed back to visual areas to modulate attention allocation according to the emotional relevance of a stimulus. The implications of the model considering other approaches to automated emotion recognition are discussed.
The paper will focus on modem control techniques applied on a two axis robot with synchronous servo drives. Based on an experimental modeling different linear and nonlinear controllers are designed and implemented. The design process was optimized by Evolution Strategies. These strategies had been also used for an online tuning of controller parameter. The implementation runs on a Pentium PC with IO-board and on a 80C166 micro controller board with a DSP extension (ADSP 21 11).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.