A better understanding of psychological trauma is fundamental to clinical psychology. Following traumatic event(s), a clinically significant number of people develop symptoms, including those of Acute Stress Disorder and/or Post Traumatic Stress Disorder. The trauma film paradigm offers an experimental psychopathology model to study both exposure and reactions to psychological trauma, including the hallmark symptom of intrusive memories. We reviewed 74 articles that have used this paradigm since the earliest review (Holmes & Bourne, 2008) until July 2014. Highlighting the different stages of trauma processing, i.e. pre-, peri- and post-trauma, the studies are divided according to manipulations before, during and after film viewing, for experimental as well as correlational designs. While the majority of studies focussed on the frequency of intrusive memories, other reactions to trauma were also modelled. We discuss the strengths and weaknesses of the trauma film paradigm as an experimental psychopathology model of trauma, consider ethical issues, and suggest future directions. By understanding the basic mechanisms underlying trauma symptom development, we can begin to translate findings from the laboratory to the clinic, test innovative science-driven interventions, and in the future reduce the debilitating effects of psychopathology following stressful and/or traumatic events.
Neuroimaging studies of cognitive control have identified two distinct networks with dissociable resting state connectivity patterns. This study, in patients with heterogeneous damage to these networks, demonstrates network independence through a double dissociation of lesion location on two different measures of network integrity: functional correlations among network nodes and within-node graph theory network properties. The degree of network damage correlates with a decrease in functional connectivity within that network while sparing the nonlesioned network. Graph theory properties of intact nodes within the damaged network show evidence of dysfunction compared with the undamaged network. The effect of anatomical damage thus extends beyond the lesioned area, but remains within the bounds of the existing network connections. Together this evidence suggests that networks defined by their role in cognitive control processes exhibit independence in resting data.functional MRI | functional connectivity | graph theory | resting state | stroke C ognitive control is required in everyday life to coordinate our thoughts and actions to achieve internal goals while still allowing the flexibility to adjust these goals with changing task demands. Although previous studies have attributed cognitive control to various prefrontal cortical regions (1, 2), recently it has been proposed that a dual-network architecture exists in the human brain in which cognitive control depends on regions that extend beyond the frontal cortex (3). In a recent cross-task analysis, Dosenbach et al. (4) identified a number of regions active during different stages of cognitive control tasks. Given the difficulty in isolating cognitive control networks that are simultaneously active during task performance, the investigators took advantage of the recent advent of resting state functional MRI (rs-fMRI) for detecting spontaneous fluctuations between coherent brain regions. In a follow-up study, these predefined regions of interest (ROIs) obtained from the task data served as seeds in a correlation analysis of rs-fMRI data (3) in which graph theory and hierarchical clustering were applied to the correlation matrices. These analyses identified two distinct networks labeled as fronto-parietal (FP) and cinguloopercular (CO) (Fig. 1A). Based on their role in cognitive tasks, the FP network consists of nodes proposed to provide signals that act on a rapid time scale to initiate and adjust control, whereas the CO network nodes act to provide signals that allow set maintenance over a longer time scale (3,5).Numerous studies using rs-fMRI have shown that neuronal activity is characterized by temporal correlations in blood oxygen level-dependent signal across disparate brain regions (6, 7). These fluctuations seem highly consistent over time and reflect the presence of intrinsic functional (8) and structural (9) connectivity. Among these fluctuations, different networks can be distinguished, many of which show remarkable resemblance to task-related networks (...
Although certain changes in the brain may reflect fear learning, there are no known markers that indicate whether an aversive experience will develop into fear memory. We examined the moment-to-moment dynamics of human fear learning by applying multi-voxel pattern analysis to single-trial blood oxygen level-dependent magnetic resonance imaging data. We found that the long-term behavioral expression of fear memory could be predicted from neural patterns at the time of learning.
Intrusive memories of a traumatic event can be distressing and disruptive, and comprise a core clinical feature of post-traumatic stress disorder (PTSD). Intrusive memories involve mental imagery-based impressions that intrude into mind involuntarily, and are emotional. Here we consider how recent advances in cognitive science have fueled our understanding of the development and possible treatment of intrusive memories of trauma. We conducted a systematic literature search in PubMed, selecting articles published from 2008 to 2018 that used the terms “trauma” AND (“intrusive memories” OR “involuntary memories”) in their abstract or title. First, we discuss studies that investigated internal (neural, hormonal, psychophysiological, and cognitive) processes that contribute to intrusive memory development. Second, we discuss studies that targeted these processes using behavioural/pharmacological interventions to reduce intrusive memories. Third, we consider possible clinical implications of this work and highlight some emerging research avenues for treatment and prevention, supplemented by new data to examine some unanswered questions. In conclusion, we raise the possibility that intrusive memories comprise an alternative, possibly more focused, target in translational research endeavours, rather than only targeting overall symptoms of disorders such as PTSD. If so, relatively simple approaches could help to address the need for easy-to-deliver, widely-scalable trauma interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.