Three-dimensional vertical resistive random access memory (VRRAM) is proposed as a promising candidate for increasing resistive memory storage density, but the performance evaluation mechanism of 3-D VRRAM arrays is still not mature enough. The previous approach to evaluating the performance of 3-D VRRAM was based on the write and read margin. However, the leakage current (LC) of the 3-D VRRAM array is a concern as well. Excess leakage currents not only reduce the read/write tolerance and liability of the memory cell but also increase the power consumption of the entire array. In this article, a 3-D circuit HSPICE simulation is used to analyze the impact of the array size and operation voltage on the leakage current in the 3-D VRRAM architecture. The simulation results show that rapidly increasing leakage currents significantly affect the size of 3-D layers. A high read voltage is profitable for enhancing the read margin. However, the leakage current also increases. Alleviating this conflict requires a trade-off when setting the input voltage. A method to improve the array read/write efficiency is proposed by analyzing the influence of the multi-bit operations on the overall leakage current. Finally, this paper explores different methods to reduce the leakage current in the 3-D VRRAM array. The leakage current model proposed in this paper provides an efficient performance prediction solution for the initial design of 3-D VRRAM arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.