We tested the hypothesis that 1,25‐dihydroxyvitamin D3[1α,25(OH)2D3] has antiaging effects via upregulating nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2), reducing reactive oxygen species (ROS), decreasing DNA damage, reducing p16/Rb and p53/p21 signaling, increasing cell proliferation, and reducing cellular senescence and the senescence‐associated secretory phenotype (SASP). We demonstrated that 1,25(OH)2D3‐deficient [1α(OH)ase−/−] mice survived on average for only 3 months. Increased tissue oxidative stress and DNA damage, downregulated Bmi1 and upregulated p16, p53 and p21 expression levels, reduced cell proliferation, and induced cell senescence and the senescence‐associated secretory phenotype (SASP) were observed. Supplementation of 1α(OH)ase−/− mice with dietary calcium and phosphate, which normalized serum calcium and phosphorus, prolonged their average lifespan to more than 8 months with reduced oxidative stress and cellular senescence and SASP. However, supplementation with exogenous 1,25(OH)2D3 or with combined calcium/phosphate and the antioxidant N‐acetyl‐l‐cysteine prolonged their average lifespan to more than 16 months and nearly 14 months, respectively, largely rescuing the aging phenotypes. We demonstrated that 1,25(OH)2D3exerted an antioxidant role by transcriptional regulation of Nrf2 via the vitamin D receptor (VDR). Homozygous ablation of p16 or heterozygous ablation of p53 prolonged the average lifespan of 1α(OH)ase−/− mice on the normal diet from 3 to 6 months by enhancing cell proliferative ability and reducing cell senescence or apoptosis. This study suggests that 1,25(OH)2D3 plays a role in delaying aging by upregulating Nrf2, inhibiting oxidative stress and DNA damage,inactivating p53‐p21 and p16‐Rb signaling pathways, and inhibiting cell senescence and SASP.
Accumulating studies have shown that oxidative stress increases with aging, which is related to the pathophysiology of postmenopausal osteoporosis. Pyrroloquinoline quinone (PQQ) is a natural anti-oxidant with anti-oxidative and anti-aging effects. However, it is unclear whether PQQ has a protective role against estrogen deficiency-induced osteoporosis. Here, we evaluated the efficacy of PQQ on bone mineral density, bone microarchitecture, bone turnover and biomechanical strength in ovariectomy (OVX)-induced osteoporosis mouse model. Although dietary PQQ supplement did not affect serum E2 levels and uterine weight in OVX mice, it could prevent OVX-induced bone loss and improve bone strength by inhibiting oxidative stress, osteocyte senescence and senescence-associated secretory phenotype (SASP), subsequently promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption, which was comparable to treatment with exogenous estrogen. The results from our study provide experimental evidence for the clinical use of PQQ to prevent estrogen deficiency-induced osteoporosis.
To determine whether 1,25-dihydroxyvitamin D (1,25(OH) 2 D) can exert an anti-osteoporosis role through anti-aging mechanisms, we analyzed the bone phenotype of mice with 1,25(OH) 2 D deficiency due to deletion of the enzyme, 25-hydroxyvitamin D 1α-hydroxylase, while on a rescue diet. 1,25(OH) 2 D deficiency accelerated age-related bone loss by activating the p16/p19 senescence signaling pathway, inhibiting osteoblastic bone formation, and stimulating osteoclastic bone resorption, osteocyte senescence, and senescence-associated secretory phenotype (SASP).Supplementation of exogenous 1,25(OH) 2 D 3 corrected the osteoporotic phenotype caused by 1,25(OH) 2 D deficiency or natural aging by inhibiting the p16/p19 pathway.The proliferation, osteogenic differentiation, and ectopic bone formation of bone marrow mesenchymal stem cells derived from mice with genetically induced deficiency of the vitamin D receptor (VDR) were significantly reduced by mechanisms including increased oxidative stress, DNA damage, and cellular senescence. We also demonstrated that p16 deletion largely rescued the osteoporotic phenotype caused by 1,25(OH) 2 D 3 deficiency, whereas 1,25(OH) 2 D 3 could up-regulate the enzyme Ezh2 via VDR-mediated transcription thereby enriching H3K27me3 and repressing p16/p19 transcription. Finally, we demonstrated that treatment with 1,25(OH) 2 D 3 improved the osteogenic defects of human BM-MSCs caused by repeated passages by stimulating their proliferation and inhibiting their senescence via the VDR-Ezh2-p16 axis. The results of this study therefore indicate that 1,25(OH) 2 D 3 plays a role in preventing age-related osteoporosis by up-regulating Ezh2 via VDR-mediated transcription, increasing H3K27me3 and repressing p16 transcription, thus promoting the proliferation and osteogenesis of BM-MSCs and inhibiting their senescence, while also stimulating osteoblastic bone formation, and inhibiting osteocyte senescence, SASP, and osteoclastic bone resorption. K E Y W O R D Scellular senescence, Ezh2, osteogenesis, osteoporosis, p16, Vitamin D
Human epidemiological studies suggest that 1,25(OH) D deficiency might increase cancer incidence, but no spontaneous tumors have been reported in mice lacking 1,25(OH) D or deficient in its receptor. In our study, we detected, for the first time, diverse types of spontaneous tumors in l,25(OH) D deficient mice more than 1 year of age. This was associated with increased oxidative stress, cellular senescence and senescence-associated secretory phenotype molecules, such as hepatocyte growth factor, mediated via its receptor c-Met. Furthermore, 1,25(OH) D prevented spontaneous tumor development. We also demonstrated that l,25(OH) D deficiency accelerates allograft tumor initiation and growth by increasing oxidative stress and DNA damage, activating oncogenes, inactivating tumor suppressor genes, stimulating malignant cell proliferation and inhibiting their senescence; in contrast, supplementation with exogenous l,25(OH) D or antioxidant, or knock-down of the Bmi1 or c-Met oncogene, largely rescued the phenotypes of allograft tumors. Results from our study suggest that 1,25(OH) D deficiency enhances tumorigenesis by increasing malignant cell oxidative stress and DNA damage, stimulating microenvironmental cell senescence and a senescence-associated secretory phenotype, and activating oncogenes and inactivating tumor suppressor genes, thus increasing malignant cell proliferation. Our study provides direct evidence supporting the role of vitamin D deficiency in increasing cancer incidence. Conversely, 1,25(OH) D prevented spontaneous tumor development, suggesting that this inhibitory effect prevents the initiation and progression of tumorigenesis, thus provides a mechanistic basis for 1,25(OH) D to prevent tumorigenesis in an aging organism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.