We propose a strategy for the semiautomatic generation of learning material for reading-comprehension tests, guided by semantic relations embedded in expository texts. Our approach combines methods from the areas of information extraction and paraphrasing in order to present a language teacher with a set of candidate multiple-choice questions and answers that can be used for verifying a language learners reading capabilities. We implemented a web-based prototype showing the feasibility of our approach and carried out a pilot user evaluation that resulted in encouraging feedback but also pointed out aspects of the strategy and prototype implementation which need improvements.
Monitoring mobility-and industryrelevant events is important in areas such as personal travel planning and supply chain management, but extracting events pertaining to specific companies, transit routes and locations from heterogeneous, high-volume text streams remains a significant challenge. We present Spree, a scalable system for real-time, automatic event extraction from social media, news and domain-specific RSS feeds. Our system is tailored to a range of mobilityand industry-related events, and processes German texts within a distributed linguistic analysis pipeline implemented in Apache Flink. The pipeline detects and disambiguates highly ambiguous domain-relevant entities, such as street names, and extracts various events with their geo-locations. Event streams are visualized on a dynamic, interactive map for monitoring and analysis.
This paper describes a new method of automatic error detection in Computer Assisted Language Learning (CAPT) system. The method combines linguistic knowledge and modern speech technology. Our HMM classifier trained from annotations of linguists is not only capable of classifying correct and wrong phonemes, but also can tell how wrong an error phoneme is pronounced. Phone errors in L2's speech, like phoneme substitution or distortion are detected with high accuracy, and at the same time, corrective feedback with multimedia support, which demonstrates how exactly error phonemes should be pronounced, is also generated.
Web debates play an important role in enabling broad participation of constituencies in social, political and economic decision-taking. However, it is challenging to organize, structure, and navigate a vast number of diverse argumentations and comments collected from many participants over a long time period. In this paper we demonstrate Common Round, a next generation platform for large-scale web debates, which provides functions for eliciting the semantic content and structures from the contributions of participants. In particular, Common Round applies language technologies for the extraction of semantic essence from textual input, aggregation of the formulated opinions and arguments. The platform also provides a cross-lingual access to debates using machine translation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.