This study analyzed changes in the starch structures and in vitro digestion profiles of a specific maize cultivar, Jike 728 (JK728), in Jilin, China, after 0–5 days of germination. The total starch, amylose, and amylopectin contents decreased significantly during germination. The average molecular weight of the starch compounds also decreased significantly during germination. The proportion of amylopectin with a degree of polymerization (DP) of 13–24 significantly decreased, while the relative abundance of amylopectin with DP values of 6–12, 25–36, and 37–60 significantly increased. The X‐ray diffraction (XRD) patterns of all samples were characteristic of A‐type starch, and the starch relative crystallinity decreased over time. The proportions of slowly digestible starch and resistant starch decreased significantly, while the proportion of rapidly digestible starch increased significantly during germination. Germination is an easy, inexpensive, and low‐carbon processing method. This study indicates that germination is an effective way to control the physical properties and digestibility of starch in maize. The changes observed in the physical properties and digestibility of maize starch after germination provide scientists with a platform to understand starch modification mechanisms that might have potential applications on an industrial scale.
Engineering a kind of hierarchical heterostructure materials has been acknowledged the challenging but prepossessing strategy in developing hybrid supercapacitors. Thus, Ni-Co PBA derived 3D/1D heterostructure NiO/NiCo2O4 based layered double hydroxide...
The novel thermosensitive star-shaped tetra-hydroxy-phenylporphyrin-cored (THPP) double hydrophilic poly(N-isopropylacrylamide)-b-poly(methylacrylamide glucose) block copolymers (THPP-(PNIPAM-b-PMAGA)4) were synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization. Notably, the low critical solution temperatures (LCSTs) of THPP-(PNIPAM-b-PMAGA)4 were above normal body temperature (37 °C) which depended on the hydrophilic PMAGA contents of copolymers. When the temperature was higher than the LCST of the copolymer, the copolymer could be neutralized into micelles in aqueous and could be coated with antitumor drugs and released around tumor cells. The MTT study indicated that THPP-(PNIPAM-b-PMAGA)4 had a low toxicity to L929 and HeLa cells in the absence of light. However, THPP-(PNIPAM-b-PMAGA)4 showed a high toxicity with HeLa cells under light irradiation which could be used as a potential photosensitizer for photodynamic therapy (PDT). In addition, THPP-(PNIPAM-b-PMAGA)4 showed specific a recognition function with Concanavalin A (Con A) to achieve active targeted drug delivery. This work provides a new approach for the development of tumor targeting and chemotherapy/PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.