We showed previously that alpha-eleostearic acid (alpha-ESA; 9Z11E13E-18:3) is converted to 9Z11E-conjugated linoleic acid (CLA) in rats through a Delta13-saturation reaction. To investigate this further, we examined the absorption and metabolism of alpha-ESA in rat intestine using a lipid absorption assay in lymph from the thoracic duct. In this study, we used 4 test oils [tung oil, perilla oil, CLA-triacylglycerol (TG), and pomegranate seed oil, containing alpha-ESA, alpha-linolenic acid (LnA; 9Z12Z15Z-18:3), CLA, and punicic acid (PA; 9Z11E13Z-18:3), respectively]. Emulsions containing the test oils were administered to rats, and lymph from the thoracic duct was collected over 24 h. The positional and geometrical isomerism of CLA produced by PA metabolism was determined using GC-electron impact (EI)-MS and (13)C-NMR, respectively; the product was confirmed to be 9Z11E-CLA. A part of alpha-ESA and PA was converted to 9Z11E-CLA 1 h after administration; therefore the lymphatic recoveries of alpha-ESA and PA were modified by the amount of recovered CLA. Cumulative recovery of CLA, alpha-ESA, and PA was lower than that of LnA only during h 1 (P < 0.05), and cumulative recovery of alpha-ESA and PA was significantly lower than that of LnA and CLA for 8 h (P < 0.05). Therefore, the absorption rate was LnA > CLA > alpha-ESA = PA. The conversion ratio of alpha-ESA to 9Z11E-CLA was higher than that of PA to 9Z11E-CLA over 24 h (P < 0.05). These results indicated that alpha-ESA and PA are slowly absorbed in rat intestine, and a portion of these fatty acids is quickly converted to 9Z11E-CLA.
It has been reported that consumption of CLA and EPA alters lipid metabolism. CLA contains conjugated double bonds, and EPA is an n-3 PUFA. Based on the possibility that a molecule with both of these structures might have interesting physiological effects, we prepared conjugated FA from EPA by alkaline isomerization and examined the effects of the conjugated EPA (CEPA) on lipid metabolism in rats. Rats were fed by oral gavage every day for 4 wk with 200 mg of FA including linoleic acid, EPA, CLA, or CEPA. Compared with other groups, rats fed CEPA showed a significant weight loss in epididymal adipose tissue and significant decreases in the levels of liver TAG and total cholesterol (TC), indicating reduced accumulation of lipid in the liver and adipose tissue. The plasma levels of TAG, TC, FFA, and tumor necrosis factor-alpha in rats fed CEPA were reduced, as was the activity of the FA synthesis system in the liver, whereas the FA-beta-oxidation system was activated by CEPA. These results suggest that intake of CEPA suppresses lipid accumulation in the liver and epididymal adipose tissue while increasing lipid catabolism in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.