Chemical
recycling is one of the most promising technologies that
could contribute to circular economy targets by providing solutions
to plastic waste; however, it is still at an early stage of development.
In this work, we describe the first light-driven, acid-catalyzed protocol
for chemical recycling of polystyrene waste to valuable chemicals
under 1 bar of O
2
. Requiring no photosensitizers and only
mild reaction conditions, the protocol is operationally simple and
has also been demonstrated in a flow system. Electron paramagnetic
resonance (EPR) investigations and density functional theory (DFT)
calculations indicate that singlet oxygen is involved as the reactive
oxygen species in this degradation process, which abstracts a hydrogen
atom from a tertiary C–H bond, leading to hydroperoxidation
and subsequent C–C bond cracking events via a radical process.
Notably, our study indicates that an adduct of polystyrene and an
acid catalyst might be formed in situ, which could act as a photosensitizer
to initiate the formation of singlet oxygen. In addition, the oxidized
polystyrene polymer may play a role in the production of singlet oxygen
under light.
The oxidative cleavage of CC double bonds with molecular oxygen to produce carbonyl compounds is an important transformation in chemical and pharmaceutical synthesis. In nature, enzymes containing the first-row transition metals, particularly heme and non-heme iron-dependent enzymes, readily activate O 2 and oxidatively cleave CC bonds with exquisite precision under ambient conditions. The reaction remains challenging for synthetic chemists, however. There are only a small number of known synthetic metal catalysts that allow for the oxidative cleavage of alkenes at an atmospheric pressure of O 2 , with very few known to catalyze the cleavage of nonactivated alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol for the selective oxidation of alkenes to carbonyls under 1 atm of O 2 . For the first time, aromatic as well as various nonactivated aliphatic alkenes could be oxidized to afford ketones and aldehydes under clean, mild conditions with a first row, biorelevant metal catalyst. Moreover, the protocol shows a very good functional group tolerance. Mechanistic investigation suggests that Mn−oxo species, including an asymmetric, mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are involved in the oxidation, and the solvent methanol participates in O 2 activation that leads to the formation of the oxo species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.