Nanoparticles are particles having a size range of 1 and 100 nanometers, defined as a small object behaving as a complete unit with respect to the drug transport and therapeutic properties. They have several advantages such as improvement in the intracellular infiltration, enhanced hydrophobic solubility, and circulation time of the drug. They reduce non-specific uptake and side effects of the conventional drug delivery systems. Nanoparticles offer more effective and convenient routes of administration (oral, pulmonary, parenteral, and transdermal) and used for drug delivery for treatment of cancer, diabetes, pain, asthma, allergy, infections, and so on. They allow targeted delivery and controlled release of the drug. Further research on their mechanism of action to meet better stability of nanoparticles in the biological system could be done.
Medulloblastoma is the most common malignant cancer of the central nervous system in children. AKT kinases are part of a survival pathway that has been found to be significantly elevated in medulloblastoma. This pathway is a point of convergence for many growth factors and controls cellular processes that are critical for tumor cell survival and proliferation. The alkyl-phospholipid perifosine [octadecyl-(1,1-dimethyl-4-piperidylio) phosphate] is a small molecule inhibitor in clinical trials in peripheral cancers which acts as a competitive inhibitor of AKT kinases. Medulloblastoma cell cultures were used to study the effects of perifosine response in preclinical studies in vitro. Perifosine treatment led to the rapid induction of cell death in medulloblastoma cell lines, with pronounced suppression of phosphorylated AKT in a time-dependent and concentration-dependent manner. LD 50 concentrations were established using viability assays for perifosine, cisplatin, and etoposide. LD 50 treatment of medulloblastoma cells with perifosine led to the cleavage of caspase 9, caspase 7, caspase 3, and poly-ADP ribosylation protein, although caspase 8 was not detectable. Combination single-dose treatment regimens of perifosine with sublethal doses of etoposide or irradiation showed a greater than additive effect in medulloblastoma cells. Lower perifosine concentrations induced cell cycle arrest at the G 1 and G 2 cell cycle checkpoints, accompanied by increased expression of the cell cycle inhibitor p21 cip1/waf1 . Treatment with p21 small interfering RNA prevented perifosine-induced cell cycle arrest. These findings indicate that perifosine, either alone or in combination with other chemotherapeutic drugs, might be an effective therapeutic agent for the treatment of
Nanoparticles are particles having a size range of 1 and 100 nanometers, defined as a small object behaving as a complete unit with respect to the drug transport and therapeutic properties. They have several advantages such as improvement in the intracellular infiltration, enhanced hydrophobic solubility, and circulation time of the drug. They reduce non-specific uptake and side effects of the conventional drug delivery systems. Nanoparticles offer more effective and convenient routes of administration (oral, pulmonary, parenteral, and transdermal) and used for drug delivery for treatment of cancer, diabetes, pain, asthma, allergy, infections, and so on. They allow targeted delivery and controlled release of the drug. Further research on their mechanism of action to meet better stability of nanoparticles in the biological system could be done.
Schizophrenia (SCZ) is a major debilitating, complex, and costly illness that strikes 1% of the world’s population. It is characterized by three general types of symptoms: Atypical symptoms (aggressiveness, agitation, delusions, hallucinations), depressive symptoms (alogia, avolition, anhedonia, apathy), and cognitive symptoms (impaired attention, learning, memory). The etiology of SCZ has still not been fully understood. Alteration in various neurochemical systems such as dopamine, serotonin, norepinephrine, gamma-aminobutyric acid, and glutamate are involved in the pathophysiology of SCZ. The lack of understanding regarding the exact pathogenic process may be the likely a reason for the non-availability of effective treatment, which can prevent onset and progression of the SCZ. The tools of modern neuroscience, drawing from neuroanatomy, neurophysiology, brain imaging, and psychopharmacology, promise to provide a host of new insights into the etiology and treatment of SCZ. In this review, we will discuss the role of the various neurotransmitter concerned and brain parts exaggerated in the SCZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.