The helicity of a localized solenoidal vector field (i.e. the integrated scalar product of the field and its vector potential) is known to be a conserved quantity under ‘frozen field’ distortion of the ambient medium. In this paper we present a number of results concerning the helicity of linked and knotted flux tubes, particularly as regards the topological interpretation of helicity in terms of the Gauss linking number and its limiting form (the Călugăreanu invariant). The helicity of a single knotted flux tube is shown to be intimately related to the Călugăreanu invariant and a new and direct derivation of this topological invariant from the invariance of helicity is given. Helicity is decomposed into writhe and twist contributions, the writhe contribution involving the Gauss integral (for definition, see equation (4.8)), which admits interpretation in terms of the sum of signed crossings of the knot, averaged over all projections. Part of the twist contribution is shown to be associated with the torsion of the knot and part with what may be described as ‘intrinsic twist’ of the field lines in the flux tube around the knot (see equations (5.13) and (5.15)). The generic behaviour associated with the deformation of the knot through a configuration with points of inflexion (points at which the curvature vanishes) is analysed and the role of the twist parameter is discussed. The derivation of the Călugăreanu invariant from first principles of fluid mechanics provides a good demonstration of the relevance of fluid dynamical techniques to topological problems.
In this paper we analyse in detail, and for the first time, the rôle of torsion in the dynamics of twisted vortex filaments. We demonstrate that torsion may influence considerably the motion of helical vortex filaments in an incompressible perfect fluid. The binormal component of the induced velocity, asymptotically responsible for the displacement of the vortex filament in the fluid, is closely analysed. The study is performed by applying the prescription of Moore & Saffman (1972) to helices of any pitch and a new asymptotic integral formula is derived. We give a rigorous proof that the Kelvin régime and its limit behaviour are obtained as a limit form of that integral asymptotic formula. The results are compared with new calculations based on the re-elaboration of Hardin's (1982) approach and with results obtained by Levy & Forsdyke (1928) and Widnall (1972) for helices of small pitch, here also re-elaborated for the purpose.
Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.