In this preliminary study involving young adults without clinical evidence of cerebrovascular disease, a greater number of modifiable cardiovascular risk factors at recommended levels was associated with higher cerebral vessel density and caliber, higher cerebral blood flow, and fewer white matter hyperintensities. Further research is needed to verify these findings and determine their clinical importance.
Although multiple models per object can usually improve segmentation efficacy, the optimum object search has shown to reduce the number of required models. The efficiency gain of FOSM over SOSM-S motivates its use for interactive applications and studies with large image data sets. FOSM and SOSM impose different degrees of shape constraints from the model, making one approach more suitable than the other, depending on contrast. This suggests the use of hybrid models that can take advantage from the strengths of fuzzy and statistical models.
The finite element method (FEM) is the preferred method to simulate phenomena in anatomical structures. However, purely FEM-based mechanical simulations require considerable time, limiting their use in clinical applications that require real-time responses, such as haptics simulators. Machine learning (ML) approaches have been proposed to help with the reduction of the required time. The present paper reviews cases where ML could help to generate faster simulations, without considerably affecting the performance results. Methods: This review details the ML approaches used, considering the anatomical structures involved, the data collection strategies, the selected ML algorithms, with corresponding features, the metrics used for validation, and the resulting time gains. Results: A total of 41 references were found. ML algorithms are mainly trained with FEM-based simulations, in 32 publications. The preferred ML approach is neural networks, including deep learning, in 35 publications. Tissue deformation is simulated in 18 applications, but other features are also considered. The average distance error and mean squared error are the most frequently used performance metrics, in 14 and 17 publications, respectively. The time gains were considerable, going from hours or minutes for purely FEM-based simulations to milliseconds, when using ML. Conclusions: ML algorithms can be used to accelerate FEM-based biomechanical simulations of anatomical structures, possibly reaching real-time responses. Fast and real-time simulations of anatomical structures, generated with ML algorithms, can help to reduce the time required by FEM-based simulations and accelerate their adoption in the clinical practice.
Vessel enhancement algorithms can help to improve the accuracy of the segmentation of the vascular system. However, their contribution to accuracy has to be evaluated as it depends on the specific applications, and in some cases it can lead to a reduction of the overall accuracy. No specific filter was suitable for all tested scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.