Ergothioneine is a sulfur metabolite that occurs in microorganisms, fungi, plants, and animals. The physiological function of ergothioneine is not clear. In recent years broad scientific consensus has formed around the idea that cellular ergothioneine primarily protects against reactive oxygen species. Herein we provide evidence that this focus on oxygen chemistry may be too narrow. We describe two enzymes from the strictly anaerobic green sulfur bacterium Chlorobium limicola that mediate oxygen-independent biosynthesis of ergothioneine. This anoxic origin suggests that ergothioneine is also important for oxygen-independent life. Furthermore, one of the discovered ergothioneine biosynthetic enzymes provides the first example of a rhodanese-like enzyme that transfers sulfur to non-activated carbon.
Ergothioneine is an emergent factor in cellular redox biochemistry in humans and pathogenic bacteria. Broad consensus has formed around the idea that ergothioneine protects cells against reactive oxygen species. The recent discovery that anaerobic microorganisms make the same metabolite using oxygen-independent chemistry, indicates that ergothioneine also plays physiological roles under anoxic conditions. In this report we describe the crystal structure of the anaerobic ergothioneine biosynthetic enzyme EanB from the green sulfur bacterium Chlorobium limicola. This enzyme catalyzes oxidative sulfurization of Ntrimethyl histidine. Based on structural and kinetic evidence we describe the catalytic mechanism of this unusual C-S bond forming reaction. Significant active site conservation among distant EanB homologs suggests that oxidative sulfurization of heterocyclic substrates may occur in a broad range of bacteria.
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Ergothioneine is an emerging component of the redox homeostasis system in human cells and in microbial pathogens, such as Mycobacterium tuberculosis and Burkholderia pseudomallei. The synthesis of stable isotope-labeled ergothioneine derivatives may provide important tools for deciphering the distribution, function, and metabolism of this compound in vivo. We describe a general protocol for the production of ergothioneine isotopologues with programmable 2 H, 15 N, 13 C, 34 S, and 33 S isotope labeling patterns. This enzymebased approach makes efficient use of commercial isotope reagents and is also directly applicable to the synthesis of radioisotopologues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.