The recognition of biosignatures on planetary bodies requires the analysis of the putative microfossil with a set of complementary analytical techniques. This includes localized elemental and isotopic analysis of both, the putative microfossil and its surrounding host matrix. If the analysis can be performed with spatial resolution at the micrometer level and ppm detection sensitivities, valuable information on the (bio)chemical and physical processes that influenced the sample material can be gained. Our miniaturized laser ablation ionization mass spectrometry (LIMS)-time-of-flight mass spectrometer instrument is a valid candidate for performing the required chemical analysis in situ. However, up until now it was limited by the spatial accuracy of the sampling. In this contribution, we introduce a newly developed microscope system with micrometer accuracy for Ultra High Vacuum application, which allows a significant increase in the measurement capabilities of our miniature LIMS system. The new enhancement allows identification and efficient and accurate sampling of features of micrometer-sized fossils in a host matrix. The performance of our system is demonstrated by the identification and chemical analysis of signatures of micrometer-sized fossil structures in the 1.9 billion-year-old Gunflint chert.
The capabilities of a double-pulse femtosecond laser ablation ionisation source for the integration into a miniature time-of-flight LIMS system designed for space research are investigated.
A new high-performance laser ablation and ionisation (LIMS) mass spectrometer for solid sample analysis with micrometer spatial- and up to 10 000 mass resolution is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.